You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
14 KiB
334 lines
14 KiB
from tinygrad import Tensor, Device, Context, GlobalCounters, dtypes
|
|
from tinygrad.uop.ops import UOp, Ops, KernelInfo, graph_rewrite, AxisType, PatternMatcher, UPat
|
|
from tinygrad.engine.realize import CompiledRunner, ExecItem, get_program
|
|
from tinygrad.dtype import AddrSpace
|
|
from tinygrad.schedule.kernelize import merge_views, view_left
|
|
from tinygrad.helpers import getenv, colored, prod, unwrap
|
|
from tinygrad.shape.shapetracker import ShapeTracker, View
|
|
from tinygrad.shape.view import strides_for_shape
|
|
from tinygrad.opt.kernel import axis_colors
|
|
|
|
def to_colored(full_shape, axis_types): return '_'.join([colored(str(s), axis_colors[at]) for s,at in zip(full_shape, axis_types)])
|
|
|
|
N = 4096
|
|
run_count = 5
|
|
|
|
BN = 128
|
|
BM = 128
|
|
BK = 8
|
|
|
|
TN = 4
|
|
TM = 4
|
|
|
|
# NOTE: this is from testgrad
|
|
# change reduceop axes and input ShapeTrackers, view gets replaced with a reshape.
|
|
# src->r->view --> src->view->r
|
|
def swizzle_reduceop(src:UOp, r:UOp, view:UOp):
|
|
if r.tag is not None: return None
|
|
# confirm the input is in order
|
|
# TODO: replace this with a UOp that allows for nothing else then remove this
|
|
permute = tuple(i for i in range(len(src.shape)) if i not in r.axis_arg)+r.axis_arg
|
|
assert permute == tuple(range(len(permute))), f"reduce axis must already be in order, {permute} isn't"
|
|
|
|
# append the reduce shape to each of the views
|
|
prshape = prod(rshape:=src.shape[-len(r.axis_arg):])
|
|
rstrides = strides_for_shape(rshape)
|
|
nv = [View.create(v.shape+rshape, tuple(x*prshape for x in v.strides)+rstrides, v.offset*prshape,
|
|
v.mask+tuple((0,s) for s in rshape) if v.mask is not None else None) for v in unwrap(view.st).views]
|
|
|
|
# no reshape required with shrinking REDUCE_AXIS
|
|
return UOp(Ops.REDUCE_AXIS, r.dtype, (src.view(ShapeTracker(tuple(nv))),),
|
|
(r.arg[0], tuple(range(len(view.shape), len(view.shape) + len(r.axis_arg)))))
|
|
|
|
pm = PatternMatcher([
|
|
(UPat(Ops.VIEW, src=(UPat(Ops.REDUCE_AXIS, src=(UPat.var("src"),), name="r"),), name="view"), swizzle_reduceop),
|
|
])
|
|
|
|
def top_spec_kernel3():
|
|
a = Tensor.empty(N,N)
|
|
b = Tensor.empty(N,N)
|
|
c = a@b
|
|
sink = c.schedule()[-1].ast
|
|
L = 16
|
|
sink = sink.reshape((N//L, L, N//L, L)) #.lift({0:UOp.range(dtypes.int, N//BM, 0), 2:UOp.range(dtypes.int, N//BN, 1)})
|
|
sink = graph_rewrite(sink, view_left+pm)
|
|
axis_types = (AxisType.GLOBAL, AxisType.LOCAL, AxisType.GLOBAL, AxisType.LOCAL, AxisType.REDUCE)
|
|
return sink.replace(arg=KernelInfo(name="top_"+to_colored(sink.full_shape, axis_types), axis_types=axis_types))
|
|
|
|
def hl_spec_kernel3():
|
|
nbIterWaveM = 2
|
|
nbIterWaveN = 2
|
|
|
|
# define buffers
|
|
# TODO: remove these views once the defines have a shape
|
|
a = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=1).view(ShapeTracker.from_shape((N,N)))
|
|
b = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=2).view(ShapeTracker.from_shape((N,N))).permute((1,0))
|
|
c = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=0).view(ShapeTracker.from_shape((N,N)))
|
|
As = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BM, AddrSpace.LOCAL), arg=0).view(ShapeTracker.from_shape((BK, BM))).permute((1,0))
|
|
Bs = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BN, AddrSpace.LOCAL), arg=1).view(ShapeTracker.from_shape((BK, BN))).permute((1,0))
|
|
A_col = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveM * TM, AddrSpace.REG), arg=0).view(ShapeTracker.from_shape((nbIterWaveM * TM,)))
|
|
B_row = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveN * TN, AddrSpace.REG), arg=1).view(ShapeTracker.from_shape((nbIterWaveN * TN,)))
|
|
|
|
# shape buffers. TODO: permutes
|
|
full_shape = (N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, N//BK, BK)
|
|
a = a.reshape((N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, 1, 1, 1, 1, N//BK, BK)).expand(full_shape)
|
|
b = b.reshape((1, 1, 1, 1, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, N//BK, BK)).expand(full_shape)
|
|
c = c.reshape((N//BM, nbIterWaveM, BM//(nbIterWaveM * TM), TM, N//BN, nbIterWaveN, BN//(nbIterWaveN * TN), TN, 1, 1))
|
|
As = As.reshape((1, nbIterWaveM, BM//(nbIterWaveM * TM), TM, 1, 1, 1, 1, 1, BK)).expand(full_shape)
|
|
Bs = Bs.reshape((1, 1, 1, 1, 1, nbIterWaveN, BN//(nbIterWaveN * TN), TN, 1, BK)).expand(full_shape)
|
|
A_col = A_col.reshape((1, nbIterWaveM, 1, TM, 1, 1, 1, 1, 1, 1)).expand(full_shape)
|
|
B_row = B_row.reshape((1, 1, 1, 1, 1, nbIterWaveN, 1, TN, 1, 1)).expand(full_shape)
|
|
|
|
# U1 L2 L3 L4 L5 U6 U7 U9 L10 L11 L12 L13 U14 U15 U17 U18 U19
|
|
expanded_shape = (32, 2, 2, 2, 2, 2, 2, 2, 32, 2, 2, 2, 2, 2, 2, 2, 512, 2, 2, 2)
|
|
assert len(expanded_shape) == 20
|
|
permute_a = list(range(len(expanded_shape)))
|
|
permute_b = permute_a[:]
|
|
|
|
# this makes all the global loads match
|
|
# this can also be more simply done by rebinding the RANGEs
|
|
permute_a[17:20] = [11,12,13]
|
|
permute_a[11:14] = [17,18,19]
|
|
permute_a[7], permute_a[10] = permute_a[10], permute_a[7]
|
|
permute_a[2:7] = [3,4,5,6,2]
|
|
|
|
permute_b[2:16] = [19,9,10,11,17,18,8,2,12,13,14,15,3,4]
|
|
permute_b[17:20] = [5,6,7]
|
|
|
|
a_permute = a.reshape(expanded_shape).permute(tuple(permute_a)).reshape(full_shape)
|
|
As_permute = As.reshape(expanded_shape).permute(tuple(permute_a)).reshape(full_shape)
|
|
|
|
b_permute = b.reshape(expanded_shape).permute(tuple(permute_b)).reshape(full_shape)
|
|
Bs_permute = Bs.reshape(expanded_shape).permute(tuple(permute_b)).reshape(full_shape)
|
|
|
|
#out = (a.load() * b.load()).r(Ops.ADD, (8, 9))
|
|
out = (As.load(As_permute.store(a_permute.load())) * Bs.load(Bs_permute.store(b_permute.load()))).r(Ops.ADD, (8, 9))
|
|
#out = (A_col.load(A_col.store(As.load(As.store(a.load())))) * B_row.load(B_row.store(Bs.load(Bs.store(b.load()))))).r(Ops.ADD, (8, 9))
|
|
|
|
axis_types = (
|
|
AxisType.GLOBAL, AxisType.UPCAST, AxisType.LOCAL, AxisType.UPCAST,
|
|
AxisType.GLOBAL, AxisType.UPCAST, AxisType.LOCAL, AxisType.UPCAST,
|
|
AxisType.REDUCE, AxisType.REDUCE)
|
|
|
|
sink = c.store(out).sink(arg=KernelInfo(name="tg_"+to_colored(full_shape, axis_types), axis_types=axis_types))
|
|
sink = graph_rewrite(sink, merge_views)
|
|
return sink
|
|
|
|
def hand_spec_kernel3(kernel4=getenv("K4", 0), kernel5=getenv("K5", 0)):
|
|
BLOCK_SIZE = 128 if kernel5 else 256
|
|
|
|
nbWaves = BLOCK_SIZE // 32
|
|
WN = 128 if kernel5 else 64
|
|
WM = BN * BM // nbWaves // WN
|
|
|
|
nbWaveX = BN // WN
|
|
nbWaveY = BM // WM
|
|
|
|
threadIdx_x = UOp(Ops.SPECIAL, dtypes.int, arg=("lidx0", BLOCK_SIZE))
|
|
waveIndex = threadIdx_x // 32
|
|
waveIdx = waveIndex % nbWaveX
|
|
waveIdy = waveIndex // nbWaveX
|
|
indexInWave = threadIdx_x % 32
|
|
|
|
nbThreadXPerWave = 8
|
|
nbThreadYPerWave = 4
|
|
|
|
idxInWave = indexInWave % nbThreadXPerWave
|
|
idyInWave = indexInWave // nbThreadXPerWave
|
|
|
|
nbIterWaveN = WN // (nbThreadXPerWave * TN)
|
|
nbIterWaveM = WM // (nbThreadYPerWave * TM)
|
|
|
|
SUBWN = WN // nbIterWaveN
|
|
SUBWM = WM // nbIterWaveM
|
|
|
|
# Thread mapping to read BKxBN block from A
|
|
rAIdx = threadIdx_x % BK
|
|
rAIdy = threadIdx_x // BK
|
|
# Thread mapping to read BNxBK block from B
|
|
rBIdx = threadIdx_x % BN
|
|
rBIdy = threadIdx_x // BN
|
|
|
|
strideReadB = BLOCK_SIZE // BN
|
|
strideReadA = BLOCK_SIZE // BK
|
|
nbReadsB = BN * BK // BLOCK_SIZE
|
|
nbReadsA = BM * BK // BLOCK_SIZE
|
|
|
|
blockIdx_x = UOp(Ops.SPECIAL, dtypes.int, arg=("gidx0", N//BN))
|
|
blockIdx_y = UOp(Ops.SPECIAL, dtypes.int, arg=("gidx1", N//BM))
|
|
|
|
a = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=1)
|
|
b = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=2)
|
|
c = UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(N*N), arg=0)
|
|
|
|
A_col = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveM * TM, AddrSpace.REG), arg=0)
|
|
B_row = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveN * TN, AddrSpace.REG), arg=1)
|
|
|
|
BM_As_stride = (BM+4) if kernel5 else BM
|
|
As = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BM_As_stride, AddrSpace.LOCAL), arg=0)
|
|
Bs = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BN, AddrSpace.LOCAL), arg=1)
|
|
|
|
c_regs = UOp(Ops.DEFINE_REG, dtypes.float.ptr(TM * nbIterWaveM * TN * nbIterWaveN), arg=2)
|
|
|
|
i = UOp.range(dtypes.int, c_regs.dtype.size, 16)
|
|
init_store = c_regs[i].store(UOp.const(dtypes.float, 0.0), i)
|
|
|
|
if kernel4:
|
|
regA = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbReadsA, AddrSpace.REG), arg=3)
|
|
regB = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbReadsB, AddrSpace.REG), arg=4)
|
|
|
|
# initial load from globals into locals (0)
|
|
kId = 0
|
|
|
|
# load from globals into locals
|
|
i = UOp.range(dtypes.int, nbReadsB, 0)
|
|
index_x = BN * blockIdx_x + rBIdx
|
|
index_y = rBIdy + i * strideReadB + kId
|
|
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i)
|
|
|
|
i = UOp.range(dtypes.int, nbReadsA, 1)
|
|
index_x = rAIdx + kId
|
|
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
|
|
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(a[N * index_y + index_x].load(), i)
|
|
|
|
# iterate over the middle chunk
|
|
kId_range = UOp.range(dtypes.int, N//BK-1, 2)
|
|
kId = kId_range*BK
|
|
|
|
barrier = UOp.barrier(As_store, Bs_store)
|
|
|
|
# load from globals into registers (next round)
|
|
i = UOp.range(dtypes.int, nbReadsB, 3)
|
|
index_x = BN * blockIdx_x + rBIdx
|
|
index_y = rBIdy + i * strideReadB + kId + BK
|
|
regB_store = regB[i].store(b[N * index_y + index_x].load(), i)
|
|
|
|
i = UOp.range(dtypes.int, nbReadsA, 4)
|
|
index_x = rAIdx + kId + BK
|
|
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
|
|
regA_store = regA[i].store(a[N * index_y + index_x].load(), i)
|
|
|
|
def inner_loop(first_range, inp_dep=()):
|
|
# inner unroll
|
|
k = UOp.range(dtypes.int, BK, first_range+0)
|
|
|
|
# load from locals into registers
|
|
iterWave = UOp.range(dtypes.int, nbIterWaveN, first_range+1)
|
|
i = UOp.range(dtypes.int, TN, first_range+2)
|
|
index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i
|
|
B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(*inp_dep), iterWave, i)
|
|
|
|
iterWave = UOp.range(dtypes.int, nbIterWaveM, first_range+3)
|
|
i = UOp.range(dtypes.int, TM, first_range+4)
|
|
index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i
|
|
A_col_store = A_col[iterWave*TM + i].store(As[k*BM_As_stride + index].load(*inp_dep), iterWave, i)
|
|
|
|
# do the GEMM math
|
|
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, first_range+5)
|
|
yt = UOp.range(dtypes.int, TM, first_range+6)
|
|
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, first_range+7)
|
|
xt = UOp.range(dtypes.int, TN, first_range+8)
|
|
x = iterWaveN * TN + xt
|
|
y = iterWaveM * TM + yt
|
|
c_regs_idx = c_regs[y * TN * nbIterWaveN + x]
|
|
# sketchy, this should end the kId_range but it doesn't
|
|
sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store),
|
|
iterWaveM, iterWaveN, yt, xt, k)
|
|
return sink
|
|
|
|
# TODO: kId_range should endrange after a barrier
|
|
sink = inner_loop(5, (barrier, regB_store, regA_store)).barrier()
|
|
|
|
# load from registers into locals
|
|
i = UOp.range(dtypes.int, nbReadsB, 14)
|
|
index_x = BN * blockIdx_x + rBIdx
|
|
index_y = rBIdy + i * strideReadB + kId + BK
|
|
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(regB[i].load(sink), i, kId_range)
|
|
|
|
i = UOp.range(dtypes.int, nbReadsA, 15)
|
|
index_x = rAIdx + kId + BK
|
|
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
|
|
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(regA[i].load(sink), i, kId_range)
|
|
|
|
# final iteration without the copy
|
|
sink = inner_loop(16, (UOp.barrier(Bs_store, As_store),))
|
|
else:
|
|
kId_range = UOp.range(dtypes.int, N//BK, 0)
|
|
kId = kId_range*BK
|
|
|
|
# load from globals into locals
|
|
i = UOp.range(dtypes.int, nbReadsB, 1)
|
|
index_x = BN * blockIdx_x + rBIdx
|
|
index_y = rBIdy + i * strideReadB + kId
|
|
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i)
|
|
|
|
i = UOp.range(dtypes.int, nbReadsA, 2)
|
|
index_x = rAIdx + kId
|
|
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
|
|
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(a[N * index_y + index_x].load(), i)
|
|
|
|
barrier = UOp.barrier(As_store, Bs_store)
|
|
|
|
k = UOp.range(dtypes.int, BK, 3)
|
|
|
|
# load from locals into registers
|
|
iterWave = UOp.range(dtypes.int, nbIterWaveN, 4)
|
|
i = UOp.range(dtypes.int, TN, 5)
|
|
index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i
|
|
B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(barrier), iterWave, i)
|
|
|
|
iterWave = UOp.range(dtypes.int, nbIterWaveM, 6)
|
|
i = UOp.range(dtypes.int, TM, 7)
|
|
index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i
|
|
A_col_store = A_col[iterWave*TM + i].store(As[k*BM_As_stride + index].load(barrier), iterWave, i)
|
|
|
|
# do the GEMM math
|
|
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 8)
|
|
yt = UOp.range(dtypes.int, TM, 9)
|
|
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 10)
|
|
xt = UOp.range(dtypes.int, TN, 12)
|
|
x = iterWaveN * TN + xt
|
|
y = iterWaveM * TM + yt
|
|
c_regs_idx = c_regs[y * TN * nbIterWaveN + x]
|
|
sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store),
|
|
iterWaveM, iterWaveN, yt, xt, k, kId_range)
|
|
|
|
# store c_regs into c
|
|
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 1000)
|
|
yt = UOp.range(dtypes.int, TM, 1001)
|
|
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 1002)
|
|
xt = UOp.range(dtypes.int, TN, 1003)
|
|
xOut = blockIdx_x * BN + waveIdx * WN + iterWaveN * SUBWN + TN * idxInWave
|
|
yOut = blockIdx_y * BM + waveIdy * WM + iterWaveM * SUBWM + TM * idyInWave
|
|
indexC = N * (yOut + yt) + xOut + xt
|
|
sink = c[indexC].store(c_regs[TN * nbIterWaveN * (iterWaveM * TM + yt) + (iterWaveN * TN + xt)].load(sink),
|
|
iterWaveM, iterWaveN, yt, xt)
|
|
|
|
return sink.sink(arg=KernelInfo(name="tinygemm"))
|
|
|
|
if __name__ == "__main__":
|
|
HL = getenv("HL")
|
|
if HL == 2: hprg = top_spec_kernel3()
|
|
elif HL == 1: hprg = hl_spec_kernel3()
|
|
else: hprg = hand_spec_kernel3()
|
|
prg = get_program(hprg, Device.default.renderer)
|
|
print(prg.src)
|
|
if getenv("SRC"): exit(0)
|
|
hrunner = CompiledRunner(prg)
|
|
|
|
a = Tensor.randn(N, N).realize()
|
|
b = Tensor.randn(N, N).realize()
|
|
hc = Tensor.zeros(N, N).contiguous().realize()
|
|
|
|
GlobalCounters.reset()
|
|
with Context(DEBUG=2):
|
|
for _ in range(run_count): tc = (a@b).realize()
|
|
|
|
GlobalCounters.reset()
|
|
buffers = [hc.uop.buffer, a.uop.buffer, b.uop.buffer]
|
|
ei = ExecItem(hrunner, buffers)
|
|
with Context(DEBUG=2):
|
|
for _ in range(run_count): ei.run(wait=True)
|
|
err = (hc-tc).square().mean().item()
|
|
print(f"hrunner {err}")
|
|
if err > 1e-06: raise RuntimeError("matmul is wrong!")
|
|
|