openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

43 lines
1.8 KiB

#!/usr/bin/env python3
import numpy as np
from tinygrad.runtime.ops_gpu import CLProgram, CLCompiler
from tinygrad import Device, dtypes
from tinygrad.device import Buffer
from hexdump import hexdump
# https://github.com/intel/intel-graphics-compiler/blob/master/documentation/visa/instructions/DPAS.md
# https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_subgroups.html
# https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_subgroup_matrix_multiply_accumulate.html
# https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_subgroup_split_matrix_multiply_accumulate.html
# https://hc34.hotchips.org/assets/program/conference/day1/GPU%20HPC/Intel_s%20Ponte%20Vecchio%20GPU%20-%20Architecture%20Systems%20and%20Software%20FINAL.pdf
device = Device["GPU"]
# NOTE: only the subgroup type 8 ones work
prog = CLProgram(device, "test", CLCompiler(device, "test").compile(f"""
__attribute__((intel_reqd_sub_group_size(8)))
__kernel void test(__global float* data0, const __global int* data1, const __global int8* data2) {{
int lidx0 = get_local_id(0);
int a = data1[lidx0];
int8 b = data2[lidx0];
float out = intel_sub_group_f16_f16_matrix_mad_k16(a, b, 0.0f);
data0[lidx0] = out;
}}
"""))
#with open("/tmp/test.elf", "wb") as f: f.write(prog.lib)
a = Buffer("GPU", 8, dtypes.float32).allocate()
b = Buffer("GPU", 0x10, dtypes.float16).allocate()
c = Buffer("GPU", 8*0x10, dtypes.float16).allocate()
row = np.array([1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8], np.float16)
mat = np.random.random((8, 0x10)).astype(np.float16)
b.copyin(row.data)
c.copyin(mat.data)
ret = prog(a._buf, b._buf, c._buf, global_size=[1,1,1], local_size=[8,1,1], wait=True)
print(ret)
out = np.frombuffer(a.as_buffer(), np.float32)
real = row.astype(np.float32)@mat.T.astype(np.float32)
print("out:", out)
print("real", real)