openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

33 lines
1.3 KiB

from tinygrad.helpers import getenv
from tinygrad import dtypes, Tensor
dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float
acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None
CNT = getenv("CNT", 8)
BS = getenv("BS", 16)
CIN = getenv("CIN", 128)
COUT = getenv("COUT", 128)
HW = getenv("HW", 128)
K = getenv("K", 3)
PADDING = getenv("PADDING", 1)
COMP = getenv("COMP", 0)
ATOL = getenv("ATOL", 1e-4)
RTOL = getenv("RTOL", 3e-2)
FLOPS = BS*K*K*CIN*HW*HW*COUT*2
def rand_input(): return Tensor.rand(BS, CIN, HW, HW, dtype=dtype_in).realize(), Tensor.rand(COUT, CIN, K, K, dtype=dtype_in).realize()
if __name__ == "__main__":
a, b = rand_input()
for i in range(CNT):
if i > 0 and getenv("RAND", 0) != 0:
a, b = rand_input()
c = a.conv2d(b, padding=PADDING, dtype=acc_dtype).realize()
if COMP:
import numpy as np, time, torch
torch_device = "cuda:0" if torch.cuda.is_available() else ("mps" if getenv("MPS", 0) else "cpu")
ta, tb = torch.from_numpy(a.numpy()).to(torch_device), torch.from_numpy(b.numpy()).to(torch_device)
tc = torch.nn.functional.conv2d(ta, tb, padding=PADDING)
np.testing.assert_allclose(c.numpy(), tc.cpu(), atol=ATOL, rtol=RTOL)