openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

45 lines
1.7 KiB

import numpy as np
from tinygrad.helpers import getenv
from tinygrad.dtype import _to_np_dtype
from tinygrad import dtypes, Tensor
dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float
acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None
if getenv("INT"): dtype_in, acc_dtype = dtypes.int8, dtypes.int32
if getenv("UINT"): dtype_in, acc_dtype = dtypes.uint8, dtypes.int32
N = getenv("N", 4096)
M = getenv("M", N)
K = getenv("K", N)
CNT = getenv("CNT", 10)
ATOL = getenv("ATOL", 1e-4)
RTOL = getenv("RTOL", 3e-2)
INT_LOW = getenv("INT_LOW", 0)
INT_HIGH = getenv("INT_HIGH", 10)
if __name__ == "__main__":
def init_matrix(rows, cols):
rng = np.random.default_rng()
# NOTE: numpy does not support bfloat16
if (np_dtype := _to_np_dtype(dtype_in)) is None: np_dtype = np.float32
if dtype_in in dtypes.ints:
return Tensor(rng.integers(INT_LOW, INT_HIGH, (rows, cols), dtype=np_dtype)).realize()
return Tensor(rng.random((rows, cols), dtype=np.float32).astype(np_dtype)).cast(dtype_in).realize()
a, b = init_matrix(M, K), init_matrix(K, N)
for i in range(CNT):
if i > 0 and getenv("RAND", 0) != 0:
a, b = init_matrix(M, K), init_matrix(K, N)
c = a.matmul(b, dtype=acc_dtype).realize()
ref = a.numpy().astype(np.float32) @ b.numpy().astype(np.float32)
res = c.numpy()
try:
np.testing.assert_allclose(res, ref, rtol=RTOL, atol=ATOL)
except AssertionError as e:
if getenv("DEBUG_VALUES", 0) > 0:
mismatch = np.where(~np.isclose(res, ref, rtol=RTOL, atol=ATOL))
print("Mismatch indices:", mismatch)
print("Result :", res[mismatch])
print("Ground truth :", ref[mismatch])
raise e