openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
 
 
 
 
 
 

76 lines
2.5 KiB

import os
import numpy as np
import math, random
from tinygrad.tensor import Tensor
from tinygrad.nn.state import get_parameters, get_state_dict, safe_save, safe_load, load_state_dict
from tinygrad.engine.search import actions, bufs_from_lin, get_kernel_actions
from tinygrad.nn.optim import Adam
from extra.optimization.extract_policynet import PolicyNet
from extra.optimization.helpers import load_worlds, ast_str_to_lin, lin_to_feats, time_linearizer
if __name__ == "__main__":
net = PolicyNet()
if os.path.isfile("/tmp/policynet.safetensors"): load_state_dict(net, safe_load("/tmp/policynet.safetensors"))
optim = Adam(get_parameters(net))
ast_strs = load_worlds()
# select a world
all_feats, all_acts, all_rews = [], [], []
while 1:
Tensor.no_grad, Tensor.training = True, False
lin = ast_str_to_lin(random.choice(ast_strs))
rawbufs = bufs_from_lin(lin)
tm = last_tm = base_tm = time_linearizer(lin, rawbufs)
# take actions
feats, acts, rews = [], [], []
while 1:
feat = lin_to_feats(lin)
feats.append(feat)
probs = net(Tensor([feat])).exp()[0].numpy()
# mask valid actions
valid_action_mask = np.zeros((len(actions)+1), dtype=np.float32)
for x in get_kernel_actions(lin): valid_action_mask[x] = 1
probs *= valid_action_mask
probs /= sum(probs)
act = np.random.choice(len(probs), p=probs)
acts.append(act)
if act == 0:
rews.append(0)
break
try:
lin.apply_opt(actions[act-1])
tm = time_linearizer(lin, rawbufs)
if math.isinf(tm): raise Exception("failed")
rews.append(((last_tm-tm)/base_tm))
last_tm = tm
except Exception:
rews.append(-0.5)
break
#print(f"{tm*1e6:10.2f}", lin.colored_shape())
assert len(feats) == len(acts) and len(acts) == len(rews)
#print(rews)
print(f"***** EPISODE {len(rews)} steps, {sum(rews):5.2f} reward, {base_tm*1e6:12.2f} -> {tm*1e6:12.2f} : {lin.colored_shape()}")
all_feats += feats
all_acts += acts
# rewards to go
for i in range(len(rews)-2, -1, -1): rews[i] += rews[i+1]
all_rews += rews
BS = 32
if len(all_feats) >= BS:
Tensor.no_grad, Tensor.training = False, True
x = Tensor(all_feats[:BS])
mask = np.zeros((BS, len(actions)+1), dtype=np.float32)
mask[range(BS), all_acts[:BS]] = all_rews[:BS]
loss = -(net(x) * Tensor(mask)).mean()
optim.zero_grad()
loss.backward()
optim.step()
all_feats = all_feats[BS:]
all_acts = all_acts[BS:]
all_rews = all_rews[BS:]