openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

32 lines
1.2 KiB

from typing import List, Tuple
from tinygrad.codegen.kernel import Kernel
from tinygrad.engine.search import get_kernel_actions, actions
_net = None
def beam_q_estimate(beam:List[Tuple[Kernel, float]]) -> List[Tuple[Kernel, float]]:
global _net
if _net is None:
from tinygrad.nn.state import load_state_dict, safe_load
from extra.optimization.pretrain_valuenet import ValueNet
_net = ValueNet(1021+len(actions), 2)
load_state_dict(_net, safe_load("/tmp/qnet.safetensors"), verbose=False)
from tinygrad.tensor import Tensor
from tinygrad.helpers import Context
from extra.optimization.helpers import lin_to_feats
import numpy as np
feats = []
lins = []
base_tms = []
for lin,tm in beam:
lin_feats = lin_to_feats(lin)
for a,v in get_kernel_actions(lin, include_0=False).items():
acts = np.zeros(len(actions))
acts[a-1] = 1.0
feats.append(np.concatenate([lin_feats, acts]))
lins.append(v)
base_tms.append(tm)
with Context(BEAM=0):
with Tensor.train(False):
preds = _net(Tensor(feats)).numpy()
pred_time = np.array(base_tms) / np.exp(preds[:, 0])
return sorted(zip(lins, pred_time), key=lambda x: x[1])