You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.4 KiB
78 lines
2.4 KiB
import unittest
|
|
import numpy as np
|
|
|
|
from tinygrad.helpers import BEAM, Timing, CI
|
|
from tinygrad import Variable, Tensor
|
|
from tinygrad.nn import Conv2d
|
|
|
|
def rand(*shape):
|
|
return Tensor(np.random.rand(*shape).astype(np.float32))
|
|
|
|
class TestBeamSearch(unittest.TestCase):
|
|
def setUp(self):
|
|
self.old_beam = BEAM.value
|
|
BEAM.value = 2
|
|
def tearDown(self):
|
|
BEAM.value = self.old_beam
|
|
|
|
def test_variable_ast_beam(self):
|
|
a = rand(3, 3).reshape((Variable("a", 1, 10).bind(3), 3))
|
|
a = (a+1).realize()
|
|
|
|
def test_big_prime_number(self):
|
|
a = rand(367, 367)
|
|
b = rand(367, 367)
|
|
c = (a@b).realize()
|
|
np.testing.assert_allclose(c.numpy(), a.numpy() @ b.numpy(), atol=1e-4, rtol=1e-4)
|
|
|
|
def test_big_prime_number_max(self):
|
|
a = -rand(367, 367)
|
|
b = rand(367, 367)
|
|
# if incorrectly padded 0, the max would be 0 instead of a negative number
|
|
c = (a*b).max(1)
|
|
np.testing.assert_allclose(c.numpy(), (a.numpy() * b.numpy()).max(1), atol=1e-4, rtol=1e-4)
|
|
|
|
def test_big_prime_number_sum(self):
|
|
a = rand(367, 367)
|
|
b = rand(367, 367)
|
|
# if incorrectly padded 0, the sum would be inf
|
|
c = (a/b).sum(1).realize()
|
|
np.testing.assert_allclose(c.numpy(), (a.numpy() / b.numpy()).sum(1), atol=1e-4, rtol=1e-4)
|
|
|
|
def test_variable_big_prime_number(self):
|
|
v = Variable("v", 1, 400).bind(367)
|
|
a = rand(367, 367)
|
|
b = rand(367, 367)
|
|
c = (a.reshape(367, v) @ b.reshape(v, 367)).realize()
|
|
np.testing.assert_allclose(c.numpy(), a.numpy() @ b.numpy(), atol=1e-4, rtol=1e-4)
|
|
|
|
def test_variable_shrink_prime_number(self):
|
|
v = Variable("v", 1, 400).bind(367)
|
|
a = rand(400, 367)
|
|
b = (a.shrink(((0,v), None))+1).reshape(367,367).realize()
|
|
np.testing.assert_allclose(b.numpy(), a.numpy()[:367]+1, atol=1e-4, rtol=1e-4)
|
|
|
|
def test_no_mutate_rawbuffers(self):
|
|
a = rand(3, 3).realize()
|
|
desired = a.numpy() + 1
|
|
a.assign(a+1)
|
|
actual = a.numpy()
|
|
np.testing.assert_allclose(actual, desired)
|
|
|
|
@unittest.skipIf(CI, "flaky. CL_OUT_OF_RESOURCES")
|
|
def test_conv_beam(self):
|
|
c = Conv2d(3, 16, (3,3))
|
|
x = rand(1,3,32,32)
|
|
with Timing():
|
|
c(x).realize()
|
|
|
|
@unittest.skip("flaky, Fatal Python error: Floating point exception")
|
|
def test_large_ast(self):
|
|
a = Tensor.rand(3, 3)
|
|
for _ in range(5):
|
|
for _ in range(4):
|
|
a = (a + a) * a
|
|
a.realize()
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|
|
|