You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
7.0 KiB
144 lines
7.0 KiB
import csv, pathlib, time, numpy as np
|
|
from os import getenv
|
|
import torch
|
|
torch.set_num_threads(1)
|
|
import onnx
|
|
from onnx.helper import tensor_dtype_to_np_dtype
|
|
import onnxruntime as ort
|
|
from onnx2torch import convert
|
|
from tinygrad.frontend.onnx import OnnxRunner
|
|
from tinygrad.helpers import OSX, DEBUG, fetch
|
|
from tinygrad import Tensor, Device
|
|
from tinygrad.device import CompileError
|
|
|
|
MODELS = {
|
|
"resnet50": "https://github.com/onnx/models/raw/main/validated/vision/classification/resnet/model/resnet50-caffe2-v1-9.onnx",
|
|
"openpilot": "https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx",
|
|
"efficientnet": "https://github.com/onnx/models/raw/main/validated/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx",
|
|
"shufflenet": "https://github.com/onnx/models/raw/main/validated/vision/classification/shufflenet/model/shufflenet-9.onnx",
|
|
"commavq": "https://huggingface.co/commaai/commavq-gpt2m/resolve/main/gpt2m.onnx",
|
|
"dm": "https://github.com/commaai/openpilot/raw/ba7f840a06dbc8ae3c45b3b4976c88a21895aed0/selfdrive/modeld/models/dmonitoring_model.onnx",
|
|
|
|
# broken in torch MPS
|
|
# "zfnet": "https://github.com/onnx/models/raw/main/archive/vision/classification/zfnet-512/model/zfnet512-9.onnx",
|
|
# TypeError: BatchNormalization() got an unexpected keyword argument 'is_test'
|
|
# "densenet": "https://github.com/onnx/models/raw/main/archive/vision/classification/densenet-121/model/densenet-3.onnx",
|
|
# AssertionError: only onnx version >= 10 supported for slice
|
|
# "bert": "https://github.com/onnx/models/raw/main/archive/text/machine_comprehension/bert-squad/model/bertsquad-8.onnx",
|
|
# really slow
|
|
# "resnet18": "https://github.com/onnx/models/raw/main/archive/vision/classification/resnet/model/resnet18-v2-7.onnx",
|
|
}
|
|
|
|
CSV = {}
|
|
open_csv = None
|
|
|
|
def benchmark(mnm, nm, fxn):
|
|
tms = []
|
|
for _ in range(3):
|
|
st = time.perf_counter_ns()
|
|
ret = fxn()
|
|
tms.append(time.perf_counter_ns() - st)
|
|
print(f"{mnm:15s} {nm:25s} {min(tms)*1e-6:7.2f} ms")
|
|
CSV[nm] = min(tms)*1e-6
|
|
return min(tms), ret
|
|
|
|
#BASE = pathlib.Path(__file__).parents[2] / "weights" / "onnx"
|
|
BASE = pathlib.Path("/tmp/onnx")
|
|
def benchmark_model(m, devices, validate_outs=False):
|
|
torch.manual_seed(1)
|
|
global open_csv, CSV
|
|
CSV = {"model": m}
|
|
|
|
fn = fetch(MODELS[m])
|
|
onnx_model = onnx.load(fn)
|
|
output_names = [out.name for out in onnx_model.graph.output]
|
|
excluded = {inp.name for inp in onnx_model.graph.initializer}
|
|
input_shapes = {inp.name:tuple(x.dim_value if x.dim_value != 0 else 1 for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input if inp.name not in excluded} # noqa: E501
|
|
input_types = {inp.name: tensor_dtype_to_np_dtype(inp.type.tensor_type.elem_type) for inp in onnx_model.graph.input if inp.name not in excluded}
|
|
#input_types = {k:v if v!=np.float16 else np.float32 for k,v in input_types.items()} # cast
|
|
np_inputs = {k:torch.randn(shp).numpy().astype(input_types[k]) for k,shp in input_shapes.items()}
|
|
assert len(input_shapes) < 30, f"too many input shapes {len(input_shapes)}"
|
|
|
|
# print input names
|
|
if DEBUG >= 2: print([inp.name for inp in onnx_model.graph.input if inp.name not in excluded])
|
|
for device in devices:
|
|
try:
|
|
Device.DEFAULT = device
|
|
inputs = {k:Tensor(inp) for k,inp in np_inputs.items()}
|
|
tinygrad_model = OnnxRunner(onnx_model)
|
|
benchmark(m, f"tinygrad_{device.lower()}_jitless", lambda: {k:v.numpy() for k,v in tinygrad_model(inputs).items()})
|
|
|
|
from tinygrad.engine.jit import TinyJit
|
|
tinygrad_jitted_model = TinyJit(lambda **kwargs: {k:v.realize() for k,v in tinygrad_model(kwargs).items()})
|
|
for _ in range(3): {k:v.numpy() for k,v in tinygrad_jitted_model(**inputs).items()}
|
|
benchmark(m, f"tinygrad_{device.lower()}_jit", lambda: {k:v.numpy() for k,v in tinygrad_jitted_model(**inputs).items()}) # noqa: F821
|
|
del inputs, tinygrad_model, tinygrad_jitted_model
|
|
except CompileError as e:
|
|
# TODO: we don't run the dm model on METAL for now
|
|
if Device.DEFAULT == "METAL":
|
|
assert "no 'buffer' resource location available" in str(e)
|
|
return
|
|
else: raise e
|
|
|
|
# convert model to torch
|
|
try:
|
|
torch_model = convert(onnx_model)
|
|
except Exception as e:
|
|
# model conversion failed
|
|
print(f"{m:16s}onnx2torch {type(e).__name__:>25}")
|
|
else:
|
|
torch_inputs = [torch.tensor(x) for x in np_inputs.values()]
|
|
try: benchmark(m, "torch_cpu", lambda: torch_model(*torch_inputs))
|
|
except Exception as e: print(f"{m:16s}torch_cpu {type(e).__name__:>25}")
|
|
|
|
torch_device = "mps" if OSX else "cuda"
|
|
torch_mps_model = torch_model.to(torch_device)
|
|
torch_mps_inputs = [x.to(torch_device) for x in torch_inputs]
|
|
try: benchmark(m, f"torch_{torch_device}", lambda: torch_mps_model(*torch_mps_inputs))
|
|
except Exception as e: print(f"{m:16s}torch_{torch_device} {type(e).__name__:>25}")
|
|
|
|
# bench onnxruntime
|
|
ort_options = ort.SessionOptions()
|
|
ort_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
ort_options.log_severity_level = 3 # no warnings
|
|
for backend in ["CPU", "CUDA" if not OSX else "CoreML"]: # https://onnxruntime.ai/docs/execution-providers/
|
|
provider = backend+"ExecutionProvider"
|
|
if provider not in ort.get_available_providers(): continue
|
|
ort_sess = ort.InferenceSession(str(fn), ort_options, [provider])
|
|
try:
|
|
benchmark(m, f"onnxruntime_{backend.lower()}", lambda: ort_sess.run(output_names, np_inputs))
|
|
except Exception as e: print(f"{m:16s}onnxruntime_{backend.lower()} {type(e).__name__:>25}")
|
|
del ort_sess
|
|
|
|
if validate_outs:
|
|
for device in devices:
|
|
rtol, atol = 2e-3, 2e-3 # tolerance for fp16 models
|
|
Device.DEFAULT = device
|
|
inputs = {k:Tensor(inp) for k,inp in np_inputs.items()}
|
|
tinygrad_model = OnnxRunner(onnx_model)
|
|
tinygrad_out = tinygrad_model(inputs)
|
|
|
|
ort_sess = ort.InferenceSession(str(fn), ort_options, ["CPUExecutionProvider"])
|
|
onnx_out = ort_sess.run(output_names, np_inputs)
|
|
onnx_out = dict([*list(zip(output_names, onnx_out))])
|
|
|
|
assert_allclose(tinygrad_out, onnx_out, rtol=rtol, atol=atol)
|
|
print(f"{m:16s}outputs validated on {device=} with rtol={rtol:.1e}, atol={atol:.1e}")
|
|
|
|
if open_csv is None:
|
|
open_csv = csv.DictWriter(open('onnx_inference_speed.csv', 'w', newline=''), fieldnames=list(CSV.keys()))
|
|
open_csv.writeheader()
|
|
open_csv.writerow(CSV)
|
|
|
|
def assert_allclose(tiny_out:dict, onnx_out:dict, rtol=1e-5, atol=1e-5):
|
|
assert len(tiny_out) == len(onnx_out) and tiny_out.keys() == onnx_out.keys()
|
|
for k in tiny_out.keys():
|
|
tiny_v, onnx_v = tiny_out[k], onnx_out[k]
|
|
if tiny_v is None: assert tiny_v == onnx_v
|
|
else: np.testing.assert_allclose(tiny_v.numpy(), onnx_v, rtol=rtol, atol=atol, err_msg=f"For tensor '{k}' in {tiny_out.keys()}")
|
|
|
|
if __name__ == "__main__":
|
|
devices = [Device.DEFAULT] if getenv("NOCLANG") else [Device.DEFAULT, "CPU"]
|
|
if getenv("MODEL", "") != "": benchmark_model(getenv("MODEL", ""), devices, True)
|
|
else:
|
|
for m in MODELS: benchmark_model(m, devices, True)
|
|
|