openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

40 lines
1.9 KiB

from tinygrad import Tensor
from test.external.mlperf_retinanet.focal_loss import sigmoid_focal_loss as ref_sigmoid_focal_loss
from test.external.mlperf_unet3d.dice import DiceCELoss
from examples.mlperf.losses import dice_ce_loss, sigmoid_focal_loss, l1_loss
import numpy as np
import torch
import unittest
class ExternalTestLosses(unittest.TestCase):
def setUp(self):
np.random.seed(42)
def _assert_loss(self, pred, tgt, tinygrad_metrics, ref_metrics, rtol=1e-07, atol=0, **kwargs):
tinygrad_metrics_res = tinygrad_metrics(Tensor(pred), Tensor(tgt), **kwargs)
ref_metrics_res = ref_metrics(torch.from_numpy(pred), torch.from_numpy(tgt), **kwargs)
np.testing.assert_allclose(tinygrad_metrics_res.numpy(), ref_metrics_res.numpy(), rtol=rtol, atol=atol)
def test_dice_ce_loss(self):
pred, label = np.random.rand(1, 3, 128, 128, 128).astype(np.float32), np.ones((1, 1, 128, 128, 128)).astype(np.uint8)
tinygrad_metrics_res, ref_metrics_res = dice_ce_loss, DiceCELoss(True, True, "NCDHW", False)
self._assert_loss(pred, label, tinygrad_metrics_res, ref_metrics_res, atol=1e-4)
def test_sigmoid_focal_loss(self):
def _apply_logit(p): return np.log(p / (1 - p))
pred, tgt = _apply_logit(np.random.rand(5,2).astype(np.float32)), np.random.randint(0, 2, (5, 2)).astype(np.float32)
for reduction in ["mean", "sum", "none"]:
for alpha, gamma in zip([-1, 0.58], [0, 2]):
self._assert_loss(pred, tgt, sigmoid_focal_loss, ref_sigmoid_focal_loss, rtol=1e-4, alpha=alpha, gamma=gamma, reduction=reduction)
def test_l1_loss(self):
N, C, H, W = 3, 4, 5, 6
shapes = ((N, C), (N, C, H), (N, C, H, W))
for reduction in ["mean", "sum", "none"]:
for shape in shapes:
pred, tgt = np.random.randint(shape).astype(np.float32), np.random.randint(shape)
self._assert_loss(pred, tgt, l1_loss, torch.nn.functional.l1_loss, reduction=reduction)
if __name__ == '__main__':
unittest.main()