openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

61 lines
1.8 KiB

import unittest
from tinygrad.nn.state import get_parameters
from tinygrad.tensor import Tensor
from tinygrad.nn import Conv2d, BatchNorm2d, optim
def model_step(lm):
with Tensor.train():
x = Tensor.ones(8,12,128,256, requires_grad=False)
optimizer = optim.SGD(get_parameters(lm), lr=0.001)
loss = lm.forward(x).sum()
optimizer.zero_grad()
loss.backward()
del x,loss
optimizer.step()
class TestBatchnorm(unittest.TestCase):
def test_conv(self):
class LilModel:
def __init__(self):
self.c = Conv2d(12, 32, 3, padding=1, bias=False)
def forward(self, x):
return self.c(x).relu()
lm = LilModel()
model_step(lm)
def test_two_conv(self):
class LilModel:
def __init__(self):
self.c = Conv2d(12, 32, 3, padding=1, bias=False)
self.c2 = Conv2d(32, 32, 3, padding=1, bias=False)
def forward(self, x):
return self.c2(self.c(x)).relu()
lm = LilModel()
model_step(lm)
def test_two_conv_bn(self):
class LilModel:
def __init__(self):
self.c = Conv2d(12, 24, 3, padding=1, bias=False)
self.bn = BatchNorm2d(24, track_running_stats=False)
self.c2 = Conv2d(24, 32, 3, padding=1, bias=False)
self.bn2 = BatchNorm2d(32, track_running_stats=False)
def forward(self, x):
x = self.bn(self.c(x)).relu()
return self.bn2(self.c2(x)).relu()
lm = LilModel()
model_step(lm)
def test_conv_bn(self):
class LilModel:
def __init__(self):
self.c = Conv2d(12, 32, 3, padding=1, bias=False)
self.bn = BatchNorm2d(32, track_running_stats=False)
def forward(self, x):
return self.bn(self.c(x)).relu()
lm = LilModel()
model_step(lm)
if __name__ == '__main__':
unittest.main()