openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

171 lines
5.3 KiB

import unittest, pickle, types
import numpy as np
from tinygrad import Tensor, TinyJit, Variable, dtypes
from tinygrad.helpers import GlobalCounters, ContextVar, Context
from tinygrad.ops import PatternMatcher, UPat, UOp, Ops
class TestPickle(unittest.TestCase):
def test_pickle_code_object(self):
y = lambda x: x*2 # noqa: E731
code_str = pickle.dumps(y.__code__)
fxn = types.FunctionType(pickle.loads(code_str), globals())
self.assertEqual(fxn(2), 4)
def test_pickle_pattern_matcher(self):
pm = PatternMatcher([(UPat.cvar('x'), lambda x: x*2)])
sink = UOp.const(dtypes.int, 2)
tt = pm.rewrite(sink)
pm_str = pickle.dumps(pm)
pm2 = pickle.loads(pm_str)
self.assertEqual(pm2.rewrite(sink).key, tt.key)
def test_pickle_main_pattern_matcher(self):
from tinygrad.codegen.devectorizer import sym
pickle.dumps(sym)
def test_pickle_realized_tensor(self):
print("** init")
t = Tensor.rand(10, 10).realize()
st = pickle.dumps(t)
t_values = t.numpy()
del t # free buffers
print("** post pickle")
init = GlobalCounters.kernel_count
t2:Tensor = pickle.loads(st)
np.testing.assert_equal(t_values, t2.numpy())
# expect at most one COPY kernel
self.assertLessEqual(GlobalCounters.kernel_count-init, 1)
def test_pickle_realized_tensor_alt(self):
print("** init")
t = Tensor.rand(10, 10).to("CPU").realize()
st = pickle.dumps(t)
t_values = t.numpy()
del t # free buffers
print("** post pickle")
init = GlobalCounters.kernel_count
t2:Tensor = pickle.loads(st)
np.testing.assert_equal(t_values, t2.numpy())
self.assertEqual(GlobalCounters.kernel_count-init, 0)
def test_pickle_realized_tensor_alt2(self):
print("** init")
t = Tensor.rand(10, 10).to("CPU").realize()
tensor_uop = t.lazydata
assert tensor_uop.is_realized, f"expected {tensor_uop} to be realized"
t_values = t.numpy()
# pickle
st = pickle.dumps(t)
# free buffers
del t
del tensor_uop
print("** post pickle")
t2:Tensor = pickle.loads(st)
assert t2.lazydata.is_realized, f"expected {t2.lazydata} to be realized"
np.testing.assert_equal(t_values, t2.numpy())
# NOTE: currently Buffer exists on the uop, not tensor
def test_pickle_buffer_uop(self):
t = Tensor.arange(4).realize()
a = t.lazydata
assert a.op is Ops.BUFFER
self.assertIsNotNone(buffer:=a.realized)
s = pickle.dumps(a)
# free buffers
del a
del buffer
a2:UOp = pickle.loads(s)
self.assertListEqual(a2.realized.as_buffer().cast("I").tolist(), [0, 1, 2, 3])
def test_pickle_unrealized_tensor(self):
t = Tensor.ones(10, 10)
st = pickle.dumps(t)
t2:Tensor = pickle.loads(st)
np.testing.assert_equal(t.numpy(), t2.numpy())
def test_pickle_variable(self):
v = Variable("i", 1, 20).bind(10)
t1 = Tensor.ones(10, v).contiguous()
t2 = Tensor.ones(10, v).contiguous()
ret = (t1+t2).sum(1)
st = pickle.dumps(ret)
del ret
vt2 = pickle.loads(st)
np.testing.assert_equal(vt2.numpy(), 20)
def test_pickle_buffer_view(self):
t = Tensor.arange(10, device="CPU").contiguous().realize()
vt = t[3:5].contiguous().realize()
assert hasattr(vt.lazydata.buffer, 'base')
ref_value = vt.tolist()
st = pickle.dumps(vt)
del t, vt
vt2 = pickle.loads(st)
assert hasattr(vt2.lazydata.buffer, 'base')
assert ref_value == vt2.tolist()
def test_pickle_numpy(self):
t = Tensor(np.array([1,2,3,4.]), dtype=dtypes.float32)
st = pickle.dumps(t)
t2:Tensor = pickle.loads(st)
np.testing.assert_equal(t.numpy(), t2.numpy())
def test_pickle_jit(self):
@TinyJit
def add(a, b): return a.sum()+b+1
for _ in range(3): add(Tensor.rand(10, 10), Tensor.rand(10, 10))
st = pickle.dumps(add)
del add
add_fxn = pickle.loads(st)
x = Tensor.ones(10, 10).contiguous().realize()
y = Tensor.ones(10, 10).contiguous().realize()
print("post jit")
out = add_fxn(x, y)
np.testing.assert_equal(out.numpy(), 102)
def test_pickle_context_var(self):
v = ContextVar("test_var", 0)
with Context(test_var=1):
vs = pickle.dumps(v)
v2 = pickle.loads(vs)
self.assertEqual(v2.value, 1)
def test_pickle_schedule(self):
a = Tensor([1,2])
out = a + 2
sched = out.schedule()
pk = pickle.dumps(sched)
sched_pk = pickle.loads(pk)
self.assertEqual(sched_pk[-1].ast, sched[-1].ast)
def test_pickle_renderer(self):
from tinygrad.device import Device
pk = pickle.dumps(Device.default.renderer)
pickle.loads(pk)
class TestPickleJIT(unittest.TestCase):
@classmethod
def setUpClass(cls):
@TinyJit
def add(a, b): return a.sum()+b+1
for _ in range(3): add(Tensor.rand(1000, 1000), Tensor.rand(1000, 1000))
cls.st = pickle.dumps(add)
del add
def test_inspect(self):
import io
class FakeClass:
def __init__(self, *args, **kwargs):
print(self.module, self.name)
class InspectUnpickler(pickle.Unpickler):
def find_class(self, module, name): return type("SpecializedFakeClass", (FakeClass,), {"name": name, "module": module})
InspectUnpickler(io.BytesIO(self.st)).load()
@unittest.skip("we are still saving intermediate buffers")
def test_size(self):
# confirm no intermediate buffers are saved
self.assertLess(len(self.st), 1_000_000)
if __name__ == '__main__':
unittest.main()