You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
2.7 KiB
90 lines
2.7 KiB
import unittest
|
|
import numpy as np
|
|
from tinygrad import Tensor, Variable
|
|
|
|
class TestTensorVariable(unittest.TestCase):
|
|
def test_add_tvar(self):
|
|
vv = Variable("a", 0, 10).bind(1)
|
|
ret = (Tensor(vv) + 3).item()
|
|
assert ret == 4
|
|
|
|
def test_inner_tvar_node(self):
|
|
vv = Variable("w", 0, 10).bind(2)
|
|
ret = Tensor.from_uop(vv * 4).item()
|
|
assert ret == 8
|
|
|
|
def test_inner_tvar_mul(self):
|
|
vv = Variable("w", 0, 10).bind(2)
|
|
assert (Tensor(3) * vv).item() == 6
|
|
|
|
def test_inner_tvar_mul_node(self):
|
|
vv = Variable("w", 0, 10).bind(2)
|
|
assert (Tensor(3) * (vv * 4)).item() == 24
|
|
|
|
def test_symbolic_mean(self):
|
|
vv = Variable("a", 1, 10).bind(2)
|
|
t = Tensor.ones(2, 2).contiguous().reshape(2, vv)
|
|
ret = t.mean().item()
|
|
assert ret == 1
|
|
|
|
def test_symbolic_mean_2d(self):
|
|
vv = Variable("a", 1, 10).bind(2)
|
|
vv2 = Variable("b", 1, 10).bind(2)
|
|
t = Tensor.ones(2, 2).contiguous().reshape(vv2, vv)
|
|
ret = t.mean().item()
|
|
assert ret == 1
|
|
|
|
def test_symbolic_mean_2d_axis_1(self):
|
|
vv = Variable("a", 1, 10).bind(2)
|
|
vv2 = Variable("b", 1, 10).bind(2)
|
|
t = Tensor.ones(2, 2).contiguous().reshape(vv2, vv)
|
|
ret = t.mean(axis=1).reshape(2, 1).numpy()
|
|
assert np.all(ret == 1)
|
|
|
|
def test_symbolic_mean_2d_add(self):
|
|
add_term = Variable("c", 0, 10).bind(1)
|
|
vv = Variable("a", 1, 10).bind(1)
|
|
vv2 = Variable("b", 1, 10).bind(1)
|
|
t = Tensor.ones(2, 2).contiguous().reshape(vv2+add_term, vv+add_term)
|
|
ret = t.mean().item()
|
|
assert ret == 1
|
|
|
|
def test_symbolic_var(self):
|
|
vv = Variable("a", 1, 10).bind(2)
|
|
t = Tensor.ones(2, 2).contiguous().reshape(2, vv)
|
|
ret = t.var().item()
|
|
assert ret == 0
|
|
|
|
def test_symbolic_pad(self):
|
|
vv = Variable("a", 1, 10).bind(2)
|
|
t = Tensor.ones(2, 2).contiguous()
|
|
t = t.pad([vv, vv, vv, vv]).mean()
|
|
ones = 4
|
|
zeros = 6+6+4+4+6+6
|
|
self.assertAlmostEqual(t.item(), ones/(ones+zeros))
|
|
|
|
def test_symbolic_arange(self):
|
|
vv = Variable("a", 1, 10)
|
|
ret = Tensor.arange(0, vv.bind(4))
|
|
self.assertListEqual(ret.reshape(4).tolist(), [0,1,2,3])
|
|
|
|
def test_symbolic_arange_sym_start(self):
|
|
vv = Variable("a", 1, 6)
|
|
ret = Tensor.arange(vv.bind(4), 7)
|
|
self.assertListEqual(ret.reshape(3).tolist(), [4,5,6])
|
|
|
|
# TODO: add vmin/vmax pattern for symbolic denominator
|
|
@unittest.expectedFailure
|
|
def test_symbolic_arange_sym_step(self):
|
|
vv = Variable("step", 1, 3)
|
|
ret = Tensor.arange(0, 10, vv.bind(2))
|
|
self.assertListEqual(ret.reshape(5).tolist(), [0,2,4,6,8])
|
|
|
|
def test_symbolic_arange_two_vars(self):
|
|
begin = Variable("b", 1, 5)
|
|
end = Variable("e", 6, 10)
|
|
ret = Tensor.arange(begin.bind(4), end.bind(7))
|
|
self.assertListEqual(ret.reshape(3).tolist(), [4,5,6])
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|
|
|