You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
5.6 KiB
107 lines
5.6 KiB
import os, unittest, ctypes
|
|
from tinygrad import dtypes, Tensor, fetch, Device
|
|
import numpy as np
|
|
from tinygrad.nn.state import ggml_data_to_tensor, gguf_load
|
|
from tinygrad.device import is_dtype_supported
|
|
try:
|
|
import ggml
|
|
except ModuleNotFoundError:
|
|
raise unittest.SkipTest("ggml not installed, skipping gguf test")
|
|
|
|
ggml_test_block_count = 4
|
|
ggml_type_to_np_dtype = {
|
|
ggml.GGML_TYPE_F16: np.float16, ggml.GGML_TYPE_F32:np.float32, ggml.GGML_TYPE_F64:np.float64,
|
|
ggml.GGML_TYPE_I8:np.int8, ggml.GGML_TYPE_I16: np.int16, ggml.GGML_TYPE_I32: np.int32, ggml.GGML_TYPE_I64: np.int64,
|
|
}
|
|
np_dtype_to_ctype = { np.float16: ctypes.c_uint16 }
|
|
gguf_val_getters = [
|
|
ggml.gguf_get_val_u8, ggml.gguf_get_val_i8, ggml.gguf_get_val_u16, ggml.gguf_get_val_i16,
|
|
ggml.gguf_get_val_u32, ggml.gguf_get_val_i32, ggml.gguf_get_val_f32, ggml.gguf_get_val_bool,
|
|
lambda *args: ggml.gguf_get_val_str(*args).decode("utf-8"), None,
|
|
ggml.gguf_get_val_u64, ggml.gguf_get_val_i64, ggml.gguf_get_val_f64,
|
|
]
|
|
|
|
def ggml_tensor_to_numpy(tensor: ggml.ggml_tensor_p):
|
|
ctx: ggml.ggml_context_p | None = None
|
|
ggml_type, n_dims, n_els = tensor.contents.type, ggml.ggml_n_dims(tensor), ggml.ggml_nelements(tensor)
|
|
shape = tuple(reversed(tensor.contents.ne[:n_dims]))
|
|
if ggml_type not in ggml_type_to_np_dtype:
|
|
ctx = ggml.ggml_init(ggml.ggml_init_params(mem_size=n_els * 5 + 500, mem_buffer=None))
|
|
ntensor = ggml.ggml_new_tensor(ctx, ggml.GGML_TYPE_F32, n_dims, tensor.contents.ne)
|
|
type_traits = ggml.ggml_internal_get_type_traits(ggml_type)
|
|
type_traits.to_float(ggml.ggml_get_data(tensor), ggml.ggml_get_data_f32(ntensor), n_els)
|
|
tensor, ggml_type = ntensor, ggml.GGML_TYPE_F32
|
|
|
|
np_type = ggml_type_to_np_dtype[ggml_type]
|
|
ctypes_type = np_dtype_to_ctype.get(np_type, None) or np.ctypeslib.as_ctypes_type(np_type)
|
|
data = ggml.ggml_get_data(tensor)
|
|
if data is None: raise ValueError("tensor data is None")
|
|
arr = (ctypes_type * ggml.ggml_nelements(tensor)).from_address(data)
|
|
strides = tuple(reversed(tensor.contents.nb[:n_dims]))
|
|
output = np.ctypeslib.as_array(arr)
|
|
output.dtype = np_type
|
|
return np.lib.stride_tricks.as_strided(output, shape=shape, strides=strides), ctx
|
|
|
|
@unittest.skipIf(any(not is_dtype_supported(t) for t in [ dtypes.uint8, dtypes.half ]), "Backend must support uint8 and half")
|
|
class TestGGUF(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
params = ggml.ggml_init_params(mem_size=0, mem_buffer=None, no_alloc=False)
|
|
self.ctx = ctypes.cast(ggml.ggml_init(params), ctypes.POINTER(ctypes.c_void_p))
|
|
def tearDown(self) -> None: ggml.ggml_free(self.ctx)
|
|
|
|
def test_load_tinyllama_q8_0(self): self._test_gguf_load("https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories15M-q8_0.gguf?download=true")
|
|
def test_load_tinyllama_q4_0(self): self._test_gguf_load("https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories15M-q4_0.gguf?download=true")
|
|
def test_load_gpt2_q4_1(self): self._test_gguf_load("https://huggingface.co/PrunaAI/gpt2-GGUF-smashed/resolve/main/gpt2.Q4_1.gguf?download=true")
|
|
def test_load_sample_q6_k(self): self._test_gguf_load("https://huggingface.co/Isotr0py/test-gguf-sample/resolve/main/Quant_Q6_K_1024.gguf?download=true")
|
|
|
|
def test_dequantization_q4_0(self): self._test_dequantization(ggml.GGML_TYPE_Q4_0)
|
|
def test_dequantization_q4_1(self): self._test_dequantization(ggml.GGML_TYPE_Q4_1)
|
|
def test_dequantization_q8_0(self): self._test_dequantization(ggml.GGML_TYPE_Q8_0)
|
|
def test_dequantization_q6_k(self): self._test_dequantization(ggml.GGML_TYPE_Q6_K)
|
|
|
|
def test_expected_failure_unknown_type(self):
|
|
with self.assertRaises(ValueError):
|
|
ggml_data_to_tensor(Tensor.empty(512, dtype=dtypes.uint8), 256, 1337)
|
|
|
|
def _test_dequantization(self, ttype: int):
|
|
type_traits = ggml.ggml_internal_get_type_traits(ttype)
|
|
n_el, n_bytes = ggml_test_block_count * type_traits.blck_size, ggml_test_block_count * type_traits.type_size
|
|
|
|
data_in = (np.random.random((n_el,)).astype(np.float32) * 100 - 50).ctypes.data_as(ctypes.POINTER(ctypes.c_float))
|
|
|
|
c_q_data, c_dq_data = (ctypes.c_char * n_bytes)(0), (ctypes.c_float * n_el)(0)
|
|
type_traits.from_float(data_in, c_q_data, n_el)
|
|
type_traits.to_float(c_q_data, c_dq_data, n_el)
|
|
|
|
q_tensor = Tensor(np.frombuffer(c_q_data, dtype=np.uint8, count=n_bytes))
|
|
dq_tensor = ggml_data_to_tensor(q_tensor, n_el, ttype).reshape(n_el)
|
|
|
|
np.testing.assert_equal(dq_tensor.numpy(), np.frombuffer(c_dq_data, dtype=np.float32))
|
|
|
|
def _test_gguf_load(self, url: str):
|
|
fp = fetch(url)
|
|
model_size = os.stat(fp).st_size
|
|
gguf_tensor = Tensor.empty(model_size, dtype=dtypes.uint8, device=f"disk:{fp}").to(Device.DEFAULT)
|
|
kv_data, tensors = gguf_load(gguf_tensor)
|
|
|
|
gguf_params = ggml.gguf_init_params(ctx=self.ctx, no_alloc=False)
|
|
gguf_ctx = ggml.gguf_init_from_file(str(fp).encode("utf8"), gguf_params)
|
|
param_ctx = gguf_params.ctx.contents.value
|
|
|
|
for ggml_tensor_idx in range(ggml.gguf_get_n_tensors(gguf_ctx)):
|
|
tensor_name = ggml.gguf_get_tensor_name(gguf_ctx, ggml_tensor_idx)
|
|
ggml_tensor = ggml.ggml_get_tensor(param_ctx, tensor_name)
|
|
ggml_tensor_numpy, temp_ctx = ggml_tensor_to_numpy(ggml_tensor)
|
|
tensor = tensors.get(tensor_name.decode("utf-8"))
|
|
np.testing.assert_equal(tensor.numpy(), ggml_tensor_numpy)
|
|
if temp_ctx is not None: ggml.ggml_free(temp_ctx)
|
|
|
|
for gguf_key_id in range(ggml.gguf_get_n_kv(gguf_ctx)):
|
|
v = kv_data[ggml.gguf_get_key(gguf_ctx, gguf_key_id).decode("utf-8")]
|
|
v_type = ggml.gguf_get_kv_type(gguf_ctx, gguf_key_id)
|
|
if (get_fn := gguf_val_getters[v_type]) is not None: self.assertEqual(get_fn(gguf_ctx, gguf_key_id), v)
|
|
|
|
ggml.gguf_free(gguf_ctx)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|
|
|