openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

128 lines
5.0 KiB

from typing import Callable
import unittest, math
import torch
from tinygrad import Tensor
from tinygrad.dtype import dtypes
from tinygrad.ops import UOp
from tinygrad.gradient import compute_gradient
class TestGradient(unittest.TestCase):
def _cmp_nan_okay(self, x, y):
if math.isnan(x) and math.isnan(y): return
self.assertAlmostEqual(x, y, places=5)
def _test_one_input_function(self, f:Callable, jf:Callable|None=None):
if jf is None: jf = f
x = UOp.variable('x', -math.inf, math.inf, dtype=dtypes.float)
gx = compute_gradient(f(x), UOp.const(dtypes.float, 1.0), set([x]))[x]
for val in [-5., -2.0, 0.0, 2.0, 5.]:
tg_out = gx.substitute({x: x.const_like(val)}).ssimplify()
tx = torch.tensor([val], dtype=torch.float, requires_grad=True)
torch_out = torch.autograd.grad(jf(tx), tx)[0].item()
self._cmp_nan_okay(tg_out, torch_out)
def _test_two_input_function(self, f:Callable, jf:Callable|None=None):
if jf is None: jf = f
x = UOp.variable('x', -math.inf, math.inf, dtype=dtypes.float)
y = UOp.variable('y', -math.inf, math.inf, dtype=dtypes.float)
grads = compute_gradient(f(x, y), UOp.const(dtypes.float, 1.0), set([x, y]))
gx, gy = grads[x], grads[y]
for valx in [-5., -2.0, 0.0, 2.0, 5.]:
for valy in [-5., -2.0, 0.0, 2.0, 5.]:
# Substitute the values into the gradient expressions
substitutions = {x: x.const_like(valx), y: y.const_like(valy)}
tg_out_x = gx.substitute(substitutions).ssimplify()
tg_out_y = gy.substitute(substitutions).ssimplify()
tx = torch.tensor([valx], dtype=torch.float, requires_grad=True)
ty = torch.tensor([valy], dtype=torch.float, requires_grad=True)
torch_grad = torch.autograd.grad(jf(tx, ty), [tx, ty])
torch_out_x, torch_out_y = [x.item() for x in torch_grad]
self._cmp_nan_okay(tg_out_x, torch_out_x)
self._cmp_nan_okay(tg_out_y, torch_out_y)
# unary ops unit
def test_recip(self): self._test_one_input_function(lambda x: 1.0/x)
def test_sin(self): self._test_one_input_function(lambda x: x.sin())
def test_sqrt(self): self._test_one_input_function(lambda x: x.sqrt())
def test_log2(self): self._test_one_input_function(lambda x: x.log2())
def test_exp2(self): self._test_one_input_function(lambda x: x.exp2())
# binary ops unit
def test_add(self): self._test_two_input_function(lambda x,y: x+y)
def test_mul(self): self._test_two_input_function(lambda x,y: x*y)
# chain rule
def test_chain(self): self._test_one_input_function(lambda x: x.sin().sqrt())
def test_chain_binop(self): self._test_two_input_function(lambda x,y: (x*y)+x*y)
def test_big_add_sin(self): self._test_two_input_function(lambda x,y: x.sin()+3.0/y)
def test_big_chain(self): self._test_two_input_function(lambda x,y: (1.0/x*y)+x*y)
def test_where(self): self._test_two_input_function(lambda x,y: (x<y).where(x,y), lambda x,y: torch.where(x<y,x,y))
class TestTensorGradient(unittest.TestCase):
def test_example(self):
x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.matmul(x).sum()
dx, dy = z.gradient(x, y)
self.assertListEqual(dx.tolist(), [[2.0, 2.0, 2.0], [0.0, 0.0, 0.0], [-2.0, -2.0, -2.0]])
self.assertListEqual(dy.tolist(), [[1.0, 1.0, 1.0]])
def test_raises(self):
x = Tensor([1.0, 2.0, 3.0])
w = Tensor.randn((3,))
with self.assertRaises(RuntimeError): x.sum().gradient(w)
def test_with_custom_gradient(self):
x = Tensor([1.0, 2.0, 3.0])
z = (x * x).sum()
dx = z.gradient(x, gradient=Tensor([3.0]))[0]
self.assertListEqual(dx.tolist(), [6.0, 12.0, 18.0])
def test_broadcast_gradient(self):
x = Tensor([[1.0], [2.0], [3.0]])
y = Tensor([[10.0, 20.0, 30.0, 40.0]])
z = (x + y).sum()
dx, dy = z.gradient(x, y)
self.assertListEqual(dx.tolist(), [[4.0], [4.0], [4.0]])
self.assertListEqual(dy.tolist(), [[3.0, 3.0, 3.0, 3.0]])
def test_non_scalar_output(self):
x = Tensor([1.0, 2.0, 3.0])
z = x * x
with self.assertRaises(AssertionError): z.gradient(x)
dz = Tensor([1.0, 1.0, 1.0])
dx = z.gradient(x, gradient=dz)[0]
self.assertListEqual(dx.tolist(), [2.0, 4.0, 6.0])
def test_cast_before_view(self):
x = Tensor([1.0, 1, 1, 1])
x_reshaped = x.reshape(2,2)
x_casted = x_reshaped.cast(dtypes.float16)
x_casted.mean().gradient(x_reshaped)
class TestRealizeMeansRealize(unittest.TestCase):
def test_randn_realizes(self):
x = Tensor.randn(2, 3, 64, 64, requires_grad=True).realize()
assert x.lazydata is not x.lazydata.base
assert x.lazydata.is_realized
#@unittest.expectedFailure
# update: passing after delete_forced_realize
def test_uniform_realizes(self):
x = Tensor.uniform(16, 3, 3, 3, requires_grad=True).realize()
print(x.lazydata)
assert x.lazydata is not x.lazydata.base
assert x.lazydata.is_realized
# NOTE: even though it doesn't realize, this seems fine
def test_uniform_gradient(self):
x = Tensor.uniform(16, 3, 3, 3, requires_grad=True).realize()
y = x * 2
y.sum().gradient(x)[0].realize()
if __name__ == '__main__':
unittest.main()