You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.5 KiB
186 lines
6.5 KiB
import unittest
|
|
from tinygrad import dtypes
|
|
from tinygrad.ops import UOp, graph_rewrite_map, _substitute
|
|
from tinygrad.codegen.symbolic import symbolic
|
|
|
|
class TestRewriteMap(unittest.TestCase):
|
|
def test_substitute(self):
|
|
a = UOp.variable('a', 0, 10)
|
|
b = UOp.variable('b', 0, 10)
|
|
c = UOp.variable('c', 0, 10)
|
|
e = UOp.variable('e', 0, 10)
|
|
ret = (a+b)*c
|
|
sub = {a+b: e}
|
|
sub_map = graph_rewrite_map(ret, _substitute, sub, bottom_up=True)
|
|
self.assertIs(sub_map[a+b], e)
|
|
self.assertIs(sub_map[(a+b)*c], e*c)
|
|
|
|
def test_substitute_depth_2(self):
|
|
a = UOp.variable('a', 0, 10)
|
|
b = UOp.variable('b', 0, 10)
|
|
c = UOp.variable('c', 0, 10)
|
|
d = UOp.variable('d', 0, 10)
|
|
e = UOp.variable('e', 0, 10)
|
|
f = UOp.variable('f', 0, 10)
|
|
ret = (a+b)*c+d
|
|
sub = {a+b: e, (a+b)*c: f}
|
|
sub_map = graph_rewrite_map(ret, _substitute, sub, bottom_up=True)
|
|
self.assertIs(sub_map[a+b], e)
|
|
self.assertIs(sub_map[(a+b)*c], f)
|
|
|
|
def test_add_zero(self):
|
|
# Build a small graph: add(0, add(const=0, const=5))
|
|
zero_node = UOp.const(dtypes.int, 0)
|
|
five_node = UOp.const(dtypes.int, 5)
|
|
inner_add = zero_node + five_node
|
|
root_add = zero_node + inner_add
|
|
|
|
# Perform top-down rewrite
|
|
node_map = graph_rewrite_map(root_add, symbolic)
|
|
|
|
# We expect that add(0, add(0, 5)) -> add(0, 5) -> 5
|
|
# Check the mapping
|
|
assert node_map[root_add] == five_node
|
|
assert node_map[inner_add] == five_node
|
|
# zero_node and five_node map to themselves
|
|
assert node_map[zero_node] == zero_node
|
|
assert node_map[five_node] == five_node
|
|
|
|
def test_double_neg(self):
|
|
"""
|
|
Test rewriting neg(neg(5)) => 5 using symbolic.
|
|
"""
|
|
# In some versions of TinyGrad, you might do: (-(-five_node))
|
|
five_node = UOp.const(dtypes.int, 5)
|
|
# If your code allows UOp(...), do that; else you might do something like:
|
|
# double_neg_five = -(-five_node)
|
|
# But let's be explicit:
|
|
neg_five = -five_node
|
|
double_neg_five = -neg_five
|
|
|
|
node_map = graph_rewrite_map(double_neg_five, symbolic)
|
|
|
|
# node_map should map double_neg_five -> five_node
|
|
self.assertEqual(node_map[double_neg_five], five_node)
|
|
# five_node maps to itself
|
|
self.assertEqual(node_map[five_node], five_node)
|
|
|
|
def test_add_zero_and_double_neg(self):
|
|
"""
|
|
Combine both rewrites: add(0, neg(neg(5))) => add(0, 5) => 5
|
|
"""
|
|
zero_node = UOp.const(dtypes.int, 0)
|
|
five_node = UOp.const(dtypes.int, 5)
|
|
neg_five = -five_node
|
|
double_neg_five = -neg_five
|
|
root_add = zero_node + double_neg_five
|
|
|
|
node_map = graph_rewrite_map(root_add, symbolic)
|
|
|
|
# node_map: root_add -> five_node, double_neg_five -> five_node
|
|
self.assertEqual(node_map[root_add], five_node)
|
|
self.assertEqual(node_map[double_neg_five], five_node)
|
|
# zero_node, five_node map to themselves
|
|
self.assertEqual(node_map[zero_node], zero_node)
|
|
self.assertEqual(node_map[five_node], five_node)
|
|
|
|
def test_multi_var_rewrites(self):
|
|
x_var = UOp.variable('x', 0, 10)
|
|
y_var = UOp.variable('y', -5, 5)
|
|
zero_node = UOp.const(dtypes.int, 0)
|
|
|
|
sum_with_zero = y_var + zero_node # (y + 0)
|
|
combined = x_var + sum_with_zero # x + (y + 0)
|
|
double_neg = -(-combined) # neg(neg(x + y))
|
|
final_expr = zero_node + double_neg # 0 + (x + y)
|
|
|
|
node_map = graph_rewrite_map(final_expr, symbolic)
|
|
|
|
# The final root should be (x_var + y_var).
|
|
expected = x_var + y_var
|
|
|
|
# Each sub-expression has its own "final" result.
|
|
# (y + 0) -> y_var
|
|
self.assertEqual(node_map[sum_with_zero], y_var)
|
|
# (x + (y+0)) -> (x + y)
|
|
self.assertEqual(node_map[combined], expected)
|
|
# neg(neg(x+y)) -> (x + y)
|
|
self.assertEqual(node_map[double_neg], expected)
|
|
# 0 + (x+y) -> (x + y)
|
|
self.assertEqual(node_map[final_expr], expected)
|
|
|
|
# x_var, y_var, zero_node remain unchanged
|
|
self.assertEqual(node_map[x_var], x_var)
|
|
self.assertEqual(node_map[y_var], y_var)
|
|
self.assertEqual(node_map[zero_node], zero_node)
|
|
|
|
def test_complex_multi_var_edges(self):
|
|
"""
|
|
Build a multi-variable expression with multiple intermediates:
|
|
|
|
x_var = UOp.variable('x', 1, 10)
|
|
y_var = UOp.variable('y', -5, 5)
|
|
z_var = UOp.variable('z', 0, 5)
|
|
zero_node = UOp.const(dtypes.int, 0)
|
|
one_node = UOp.const(dtypes.int, 1)
|
|
|
|
yz_sum = y_var + z_var
|
|
yz_sum_zero = yz_sum + zero_node -> rewrites to yz_sum
|
|
yz_neg = -yz_sum_zero -> -(y+z)
|
|
yz_dneg = -yz_neg -> y+z (double neg gone)
|
|
x_plus_yz = x_var + yz_dneg -> x + (y+z)
|
|
double_neg_x = -(-x_plus_yz) -> x + (y+z)
|
|
final_expr = double_neg_x * one_node -> x + (y+z)
|
|
|
|
We expect the final result to be (x + (y+z)).
|
|
Each original node should map to the final node that replaces it,
|
|
which might be structurally equivalent but not the same reference.
|
|
"""
|
|
x_var = UOp.variable('x', 1, 10)
|
|
y_var = UOp.variable('y', -5, 5)
|
|
z_var = UOp.variable('z', 0, 5)
|
|
zero_node = UOp.const(dtypes.int, 0)
|
|
one_node = UOp.const(dtypes.int, 1)
|
|
|
|
# Build sub-expressions
|
|
yz_sum = y_var + z_var # (y + z)
|
|
yz_sum_zero = yz_sum + zero_node # (y + z) + 0
|
|
yz_neg = -yz_sum_zero # -(y+z)
|
|
yz_dneg = -yz_neg # -(-(y+z)) -> (y+z)
|
|
x_plus_yz = x_var + yz_dneg # x + (y+z)
|
|
double_neg_x = -(-x_plus_yz) # neg(neg(x+(y+z))) -> x+(y+z)
|
|
final_expr = double_neg_x * one_node # (x+(y+z)) * 1 -> x+(y+z)
|
|
|
|
node_map = graph_rewrite_map(final_expr, symbolic)
|
|
|
|
# (y + z) is unchanged
|
|
self.assertEqual(node_map[yz_sum], yz_sum)
|
|
|
|
# (y+z) + 0 => (y+z)
|
|
self.assertEqual(node_map[yz_sum_zero], yz_sum)
|
|
|
|
# -(y+z) remains -(y+z), but might be a new UOp with updated children
|
|
# Compare structurally to -(y_var + z_var).
|
|
self.assertEqual(node_map[yz_neg], -yz_sum)
|
|
|
|
# -(-(y+z)) => (y+z)
|
|
self.assertEqual(node_map[yz_dneg], yz_sum)
|
|
|
|
# x + (y+z) => might get recreated if yz_dneg was changed, so compare to x + yz_sum
|
|
self.assertEqual(node_map[x_plus_yz], x_var + yz_sum)
|
|
|
|
# -(-(x+(y+z))) => x + (y+z)
|
|
self.assertEqual(node_map[double_neg_x], x_var + yz_sum)
|
|
|
|
# (x+(y+z)) * 1 => x+(y+z)
|
|
self.assertEqual(node_map[final_expr], x_var + yz_sum)
|
|
|
|
# Unchanged atomic nodes map to themselves
|
|
self.assertEqual(node_map[x_var], x_var)
|
|
self.assertEqual(node_map[y_var], y_var)
|
|
self.assertEqual(node_map[z_var], z_var)
|
|
self.assertEqual(node_map[zero_node], zero_node)
|
|
self.assertEqual(node_map[one_node], one_node)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|
|
|