openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

548 lines
34 KiB

from __future__ import annotations
import os, ctypes, contextlib, re, functools, mmap, struct, array, sys
assert sys.platform != 'win32'
from typing import Any, cast, Union, Type, ClassVar
from dataclasses import dataclass
from tinygrad.runtime.support.hcq import HCQCompiled, HCQAllocator, HCQBuffer, HWQueue, CLikeArgsState, HCQProgram, HCQSignal, BumpAllocator
from tinygrad.runtime.support.hcq import HWInterface, MOCKGPU
from tinygrad.ops import sint
from tinygrad.device import BufferSpec, CPUProgram
from tinygrad.helpers import getenv, mv_address, init_c_struct_t, to_mv, round_up, data64, data64_le, DEBUG, prod, OSX
from tinygrad.renderer.ptx import PTXRenderer
from tinygrad.renderer.cstyle import NVRenderer
from tinygrad.runtime.support.compiler_cuda import CUDACompiler, PTXCompiler, PTX, NVPTXCompiler, NVCompiler
from tinygrad.runtime.autogen import nv_gpu
from tinygrad.runtime.support.elf import elf_loader
if getenv("IOCTL"): import extra.nv_gpu_driver.nv_ioctl # noqa: F401 # pylint: disable=unused-import
def get_error_str(status): return f"{status}: {nv_gpu.nv_status_codes.get(status, 'Unknown error')}"
NV_PFAULT_FAULT_TYPE = {dt:name for name,dt in nv_gpu.__dict__.items() if name.startswith("NV_PFAULT_FAULT_TYPE_")}
NV_PFAULT_ACCESS_TYPE = {dt:name.split("_")[-1] for name,dt in nv_gpu.__dict__.items() if name.startswith("NV_PFAULT_ACCESS_TYPE_")}
def nv_iowr(fd:HWInterface, nr, args):
ret = fd.ioctl((3 << 30) | (ctypes.sizeof(args) & 0x1FFF) << 16 | (ord('F') & 0xFF) << 8 | (nr & 0xFF), args)
if ret != 0: raise RuntimeError(f"ioctl returned {ret}")
def rm_alloc(fd, clss, root, parant, params):
made = nv_gpu.NVOS21_PARAMETERS(hRoot=root, hObjectParent=parant, hClass=clss,
pAllocParms=ctypes.cast(ctypes.byref(params), ctypes.c_void_p) if params is not None else None)
nv_iowr(fd, nv_gpu.NV_ESC_RM_ALLOC, made)
if made.status != 0:
if made.status == nv_gpu.NV_ERR_NO_MEMORY: raise MemoryError(f"rm_alloc returned {get_error_str(made.status)}")
raise RuntimeError(f"rm_alloc returned {get_error_str(made.status)}")
return made
def rm_control(cmd, sttyp, fd, client, obj, **kwargs):
made = nv_gpu.NVOS54_PARAMETERS(hClient=client, hObject=obj, cmd=cmd, paramsSize=ctypes.sizeof(params:=sttyp(**kwargs)),
params=ctypes.cast(ctypes.byref(params), ctypes.c_void_p) if params is not None else None)
nv_iowr(fd, nv_gpu.NV_ESC_RM_CONTROL, made)
if made.status != 0: raise RuntimeError(f"rm_control returned {get_error_str(made.status)}")
return params
def make_rmctrl_type():
return type("NVRMCTRL", (object,), {name[name.find("_CTRL_CMD_")+10:].lower(): functools.partial(rm_control, dt, sttyp)
for name,dt in nv_gpu.__dict__.items() if name.find("_CTRL_CMD_")>=0 and (sttyp:=getattr(nv_gpu, name.replace("_CTRL_CMD_", "_CTRL_")+"_PARAMS", \
getattr(nv_gpu, name+"_PARAMS", getattr(nv_gpu, name.replace("_CTRL_CMD_", "_CTRL_DEBUG_")+"_PARAMETERS", None))))})
rmctrl = make_rmctrl_type()
def uvm_ioctl(cmd, sttyp, fd:HWInterface, **kwargs):
ret = fd.ioctl(cmd, made:=sttyp(**kwargs))
if ret != 0: raise RuntimeError(f"ioctl(uvm) returned {ret}")
if made.rmStatus != 0: raise RuntimeError(f"uvm_ioctl returned {get_error_str(made.rmStatus)}")
return made
def make_uvm_type():
return type("NVUVM", (object,), {name.replace("UVM_", "").lower(): functools.partial(uvm_ioctl, dt, getattr(nv_gpu, name+"_PARAMS"))
for name,dt in nv_gpu.__dict__.items() if name.startswith("UVM_") and nv_gpu.__dict__.get(name+"_PARAMS")})
uvm = make_uvm_type()
def make_qmd_struct_type():
fields: list[tuple[str, Union[Type[ctypes.c_uint64], Type[ctypes.c_uint32]], Any]] = []
bits = [(name,dt) for name,dt in nv_gpu.__dict__.items() if name.startswith("NVC6C0_QMDV03_00") and isinstance(dt, tuple)]
bits += [(name+f"_{i}",dt(i)) for name,dt in nv_gpu.__dict__.items() for i in range(8) if name.startswith("NVC6C0_QMDV03_00") and callable(dt)]
bits = sorted(bits, key=lambda x: x[1][1])
for i,(name, data) in enumerate(bits):
if i > 0 and (gap:=(data[1] - bits[i-1][1][0] - 1)) != 0: fields.append((f"_reserved{i}", ctypes.c_uint32, gap))
fields.append((name.replace("NVC6C0_QMDV03_00_", "").lower(), ctypes.c_uint32, data[0]-data[1]+1))
if len(fields) >= 2 and fields[-2][0].endswith('_lower') and fields[-1][0].endswith('_upper') and fields[-1][0][:-6] == fields[-2][0][:-6]:
fields = fields[:-2] + [(fields[-1][0][:-6], ctypes.c_uint64, fields[-1][2] + fields[-2][2])]
return init_c_struct_t(tuple(fields))
qmd_struct_t = make_qmd_struct_type()
assert ctypes.sizeof(qmd_struct_t) == 0x40 * 4
class NVSignal(HCQSignal):
def __init__(self, base_addr:int|None=None, **kwargs):
super().__init__(base_addr, **kwargs, timestamp_divider=1000, dev_t=NVDevice)
class NVCommandQueue(HWQueue[NVSignal, 'NVDevice', 'NVProgram', 'NVArgsState']):
def __init__(self):
self.active_qmd = None
super().__init__()
def __del__(self):
if self.binded_device is not None: self.binded_device.allocator.free(self.hw_page, self.hw_page.size, BufferSpec(cpu_access=True, nolru=True))
def nvm(self, subchannel, mthd, *args, typ=2): self.q((typ << 28) | (len(args) << 16) | (subchannel << 13) | (mthd >> 2), *args)
def setup(self, compute_class=None, copy_class=None, local_mem_window=None, shared_mem_window=None, local_mem=None, local_mem_tpc_bytes=None):
if compute_class: self.nvm(1, nv_gpu.NVC6C0_SET_OBJECT, compute_class)
if copy_class: self.nvm(4, nv_gpu.NVC6C0_SET_OBJECT, copy_class)
if local_mem_window: self.nvm(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_WINDOW_A, *data64(local_mem_window))
if shared_mem_window: self.nvm(1, nv_gpu.NVC6C0_SET_SHADER_SHARED_MEMORY_WINDOW_A, *data64(shared_mem_window))
if local_mem: self.nvm(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_A, *data64(local_mem))
if local_mem_tpc_bytes: self.nvm(1, nv_gpu.NVC6C0_SET_SHADER_LOCAL_MEMORY_NON_THROTTLED_A, *data64(local_mem_tpc_bytes), 0xff)
return self
def wait(self, signal:NVSignal, value:sint=0):
self.nvm(0, nv_gpu.NVC56F_SEM_ADDR_LO, *data64_le(signal.value_addr), *data64_le(value), (3 << 0) | (1 << 24)) # ACQUIRE | PAYLOAD_SIZE_64BIT
self.active_qmd = None
return self
def timestamp(self, signal:NVSignal): return self.signal(signal, 0)
def bind(self, dev:NVDevice):
self.binded_device = dev
self.hw_page = dev.allocator.alloc(len(self._q) * 4, BufferSpec(cpu_access=True, nolru=True))
hw_view = to_mv(self.hw_page.va_addr, self.hw_page.size).cast("I")
for i, value in enumerate(self._q): hw_view[i] = value
# From now on, the queue is on the device for faster submission.
self._q = hw_view
def _submit_to_gpfifo(self, dev:NVDevice, gpfifo:GPFifo):
if dev == self.binded_device: cmdq_addr = self.hw_page.va_addr
else:
cmdq_addr = dev.cmdq_allocator.alloc(len(self._q) * 4)
cmdq_wptr = (cmdq_addr - dev.cmdq_page.va_addr) // 4
dev.cmdq[cmdq_wptr : cmdq_wptr + len(self._q)] = array.array('I', self._q)
gpfifo.ring[gpfifo.put_value % gpfifo.entries_count] = (cmdq_addr//4 << 2) | (len(self._q) << 42) | (1 << 41)
gpfifo.controls.GPPut = (gpfifo.put_value + 1) % gpfifo.entries_count
if CPUProgram.atomic_lib is not None: CPUProgram.atomic_lib.atomic_thread_fence(__ATOMIC_SEQ_CST:=5)
dev.gpu_mmio[0x90 // 4] = gpfifo.token
gpfifo.put_value += 1
class NVComputeQueue(NVCommandQueue):
def memory_barrier(self):
self.nvm(1, nv_gpu.NVC6C0_INVALIDATE_SHADER_CACHES_NO_WFI, (1 << 12) | (1 << 4) | (1 << 0))
self.active_qmd = None
return self
def exec(self, prg:NVProgram, args_state:NVArgsState, global_size:tuple[sint, ...], local_size:tuple[sint, ...]):
self.bind_args_state(args_state)
ctypes.memmove(qmd_addr:=(args_state.ptr + round_up(prg.constbufs[0][1], 1 << 8)), ctypes.addressof(prg.qmd), 0x40 * 4)
assert qmd_addr < (1 << 40), f"large qmd addr {qmd_addr:x}"
qmd = qmd_struct_t.from_address(qmd_addr) # Save qmd for later update
self.bind_sints_to_ptr(*global_size, ptr=qmd_addr + nv_gpu.NVC6C0_QMDV03_00_CTA_RASTER_WIDTH[1] // 8, fmt='I')
self.bind_sints_to_ptr(*local_size, ptr=qmd_addr + nv_gpu.NVC6C0_QMDV03_00_CTA_THREAD_DIMENSION0[1] // 8, fmt='H')
self.bind_sints_to_ptr(*local_size, *global_size, ptr=args_state.ptr, fmt='I')
qmd.constant_buffer_addr_upper_0, qmd.constant_buffer_addr_lower_0 = data64(args_state.ptr)
if self.active_qmd is None:
self.nvm(1, nv_gpu.NVC6C0_SEND_PCAS_A, qmd_addr >> 8)
self.nvm(1, nv_gpu.NVC6C0_SEND_SIGNALING_PCAS2_B, 9)
else:
self.active_qmd.dependent_qmd0_pointer = qmd_addr >> 8
self.active_qmd.dependent_qmd0_action = 1
self.active_qmd.dependent_qmd0_prefetch = 1
self.active_qmd.dependent_qmd0_enable = 1
self.active_qmd = qmd
return self
def signal(self, signal:NVSignal, value:sint=0):
if self.active_qmd is not None:
for i in range(2):
if getattr(self.active_qmd, f'release{i}_enable') == 0:
setattr(self.active_qmd, f'release{i}_enable', 1)
self.bind_sints(signal.value_addr, struct=self.active_qmd, start_field=f'release{i}_address', fmt='Q', mask=0xfffffffff)
self.bind_sints(value, struct=self.active_qmd, start_field=f'release{i}_payload', fmt='Q')
return self
self.nvm(0, nv_gpu.NVC56F_SEM_ADDR_LO, *data64_le(signal.value_addr), *data64_le(value),
(1 << 0) | (1 << 20) | (1 << 24) | (1 << 25)) # RELEASE | RELEASE_WFI | PAYLOAD_SIZE_64BIT | RELEASE_TIMESTAMP
self.nvm(0, nv_gpu.NVC56F_NON_STALL_INTERRUPT, 0x0)
self.active_qmd = None
return self
def _submit(self, dev:NVDevice): self._submit_to_gpfifo(dev, dev.compute_gpfifo)
class NVCopyQueue(NVCommandQueue):
def copy(self, dest:sint, src:sint, copy_size:int):
self.nvm(4, nv_gpu.NVC6B5_OFFSET_IN_UPPER, *data64(src), *data64(dest))
self.nvm(4, nv_gpu.NVC6B5_LINE_LENGTH_IN, copy_size)
self.nvm(4, nv_gpu.NVC6B5_LAUNCH_DMA, 0x182) # TRANSFER_TYPE_NON_PIPELINED | DST_MEMORY_LAYOUT_PITCH | SRC_MEMORY_LAYOUT_PITCH
return self
def signal(self, signal:NVSignal, value:sint=0):
self.nvm(4, nv_gpu.NVC6B5_SET_SEMAPHORE_A, *data64(signal.value_addr), value)
self.nvm(4, nv_gpu.NVC6B5_LAUNCH_DMA, 0x14)
return self
def _submit(self, dev:NVDevice): self._submit_to_gpfifo(dev, dev.dma_gpfifo)
class NVArgsState(CLikeArgsState):
def __init__(self, ptr:int, prg:NVProgram, bufs:tuple[HCQBuffer, ...], vals:tuple[int, ...]=()):
if MOCKGPU: prg.constbuffer_0[80:82] = [len(bufs), len(vals)]
super().__init__(ptr, prg, bufs, vals=vals, prefix=prg.constbuffer_0)
class NVProgram(HCQProgram):
def __init__(self, dev:NVDevice, name:str, lib:bytes):
self.dev, self.name, self.lib = dev, name, lib
if MOCKGPU: image, sections, relocs, cbuf0_size = memoryview(bytearray(lib) + b'\x00' * (4 - len(lib)%4)).cast("I"), [], [], 0x160 # type: ignore
else: image, sections, relocs = elf_loader(self.lib, force_section_align=128)
# NOTE: Ensure at least 4KB of space after the program to mitigate prefetch memory faults.
self.lib_gpu = self.dev.allocator.alloc(round_up(image.nbytes, 0x1000) + 0x1000, BufferSpec(cpu_access=True))
self.prog_addr, self.prog_sz, self.regs_usage, self.shmem_usage, self.lcmem_usage = self.lib_gpu.va_addr, image.nbytes, 0, 0x400, 0
self.constbufs: dict[int, tuple[int, int]] = {0: (0, 0x160)} # dict[constbuf index, tuple[va_addr, size]]
for sh in sections:
if sh.name == f".nv.shared.{self.name}": self.shmem_usage = round_up(0x400 + sh.header.sh_size, 128)
if sh.name == f".text.{self.name}":
self.prog_addr, self.prog_sz, self.regs_usage = self.lib_gpu.va_addr+sh.header.sh_addr, sh.header.sh_size, max(sh.header.sh_info>>24, 16)
elif m:=re.match(r'\.nv\.constant(\d+)', sh.name): self.constbufs[int(m.group(1))] = (self.lib_gpu.va_addr+sh.header.sh_addr, sh.header.sh_size)
elif sh.name.startswith(".nv.info"):
for typ, param, data in self._parse_elf_info(sh):
if sh.name == f".nv.info.{name}" and param == 0xa: cbuf0_size = struct.unpack_from("IH", data)[1] # EIATTR_PARAM_CBANK
elif sh.name == ".nv.info" and param == 0x12: self.lcmem_usage = struct.unpack_from("II", data)[1] + 0x240 # EIATTR_MIN_STACK_SIZE
# Ensure device has enough local memory to run the program
self.dev._ensure_has_local_memory(self.lcmem_usage)
# Apply relocs
for apply_image_offset, rel_sym_offset, typ, _ in relocs:
# These types are CUDA-specific, applying them here
if typ == 2: image[apply_image_offset:apply_image_offset+8] = struct.pack('<Q', self.lib_gpu.va_addr + rel_sym_offset) # R_CUDA_64
elif typ == 0x38: image[apply_image_offset+4:apply_image_offset+8] = struct.pack('<I', (self.lib_gpu.va_addr + rel_sym_offset) & 0xffffffff)
elif typ == 0x39: image[apply_image_offset+4:apply_image_offset+8] = struct.pack('<I', (self.lib_gpu.va_addr + rel_sym_offset) >> 32)
else: raise RuntimeError(f"unknown NV reloc {typ}")
ctypes.memmove(self.lib_gpu.va_addr, mv_address(image), image.nbytes)
self.constbuffer_0 = [0] * (cbuf0_size // 4)
self.constbuffer_0[6:12] = [*data64_le(self.dev.shared_mem_window), *data64_le(self.dev.local_mem_window), *data64_le(0xfffdc0)]
smem_cfg = min(shmem_conf * 1024 for shmem_conf in [32, 64, 100] if shmem_conf * 1024 >= self.shmem_usage) // 4096 + 1
self.qmd: ctypes.Structure = \
qmd_struct_t(qmd_group_id=0x3f, sm_global_caching_enable=1, invalidate_texture_header_cache=1, invalidate_texture_sampler_cache=1,
invalidate_texture_data_cache=1, invalidate_shader_data_cache=1, api_visible_call_limit=1, sampler_index=1,
cwd_membar_type=nv_gpu.NVC6C0_QMDV03_00_CWD_MEMBAR_TYPE_L1_SYSMEMBAR, qmd_major_version=3, constant_buffer_invalidate_0=1,
shared_memory_size=self.shmem_usage, min_sm_config_shared_mem_size=smem_cfg, target_sm_config_shared_mem_size=smem_cfg,
max_sm_config_shared_mem_size=0x1a, register_count_v=self.regs_usage, program_address=self.prog_addr, sass_version=0x89,
barrier_count=1, shader_local_memory_high_size=self.dev.slm_per_thread, program_prefetch_size=self.prog_sz>>8,
program_prefetch_addr_lower_shifted=self.prog_addr>>8, program_prefetch_addr_upper_shifted=self.prog_addr>>40)
for i,(addr,sz) in self.constbufs.items():
self.qmd.__setattr__(f'constant_buffer_addr_upper_{i}', (addr) >> 32)
self.qmd.__setattr__(f'constant_buffer_addr_lower_{i}', (addr) & 0xffffffff)
self.qmd.__setattr__(f'constant_buffer_size_shifted4_{i}', sz)
self.qmd.__setattr__(f'constant_buffer_valid_{i}', 1)
# Registers allocation granularity per warp is 256, warp allocation granularity is 4. Register file size is 65536.
self.max_threads = ((65536 // round_up(max(1, self.regs_usage) * 32, 256)) // 4) * 4 * 32
# NV's kernargs is constbuffer, then arguments to the kernel follows. Kernargs also appends QMD at the end of the kernel.
super().__init__(NVArgsState, self.dev, self.name, kernargs_alloc_size=round_up(self.constbufs[0][1], 1 << 8) + (8 << 8))
def _parse_elf_info(self, sh, start_off=0):
while start_off < sh.header.sh_size:
typ, param, sz = struct.unpack_from("BBH", sh.content, start_off)
yield typ, param, sh.content[start_off+4:start_off+sz+4] if typ == 0x4 else sz
start_off += (sz if typ == 0x4 else 0) + 4
def __del__(self):
if hasattr(self, 'lib_gpu'): self.dev.allocator.free(self.lib_gpu, self.lib_gpu.size, BufferSpec(cpu_access=True))
def __call__(self, *bufs, global_size:tuple[int,int,int]=(1,1,1), local_size:tuple[int,int,int]=(1,1,1), vals:tuple[int, ...]=(), wait=False):
if prod(local_size) > 1024 or self.max_threads < prod(local_size) or self.lcmem_usage > cast(NVDevice, self.dev).slm_per_thread:
raise RuntimeError(f"Too many resources requested for launch, {prod(local_size)=}, {self.max_threads=}")
if any(cur > mx for cur,mx in zip(global_size, [2147483647, 65535, 65535])) or any(cur > mx for cur,mx in zip(local_size, [1024, 1024, 64])):
raise RuntimeError(f"Invalid global/local dims {global_size=}, {local_size=}")
return super().__call__(*bufs, global_size=global_size, local_size=local_size, vals=vals, wait=wait)
class NVAllocator(HCQAllocator['NVDevice']):
def _alloc(self, size:int, options:BufferSpec) -> HCQBuffer:
if options.host: return self.dev._gpu_alloc(size, host=True, tag="user host memory")
return self.dev._gpu_alloc(size, cpu_access=options.cpu_access, tag=f"user memory ({options})")
def _free(self, opaque:HCQBuffer, options:BufferSpec):
self.dev.synchronize()
self.dev._gpu_free(opaque)
def map(self, buf:HCQBuffer): self.dev._gpu_map(buf._base if buf._base is not None else buf)
@dataclass
class GPFifo:
ring: memoryview
controls: nv_gpu.AmpereAControlGPFifo
entries_count: int
token: int
put_value: int = 0
MAP_FIXED, MAP_NORESERVE = 0x10, 0x400
class NVDevice(HCQCompiled[NVSignal]):
devices: ClassVar[list[HCQCompiled]] = []
signal_pages: ClassVar[list[Any]] = []
signal_pool: ClassVar[list[int]] = []
root = None
fd_ctl: HWInterface
fd_uvm: HWInterface
gpus_info: Union[list, ctypes.Array] = []
# TODO: Need a proper allocator for va addresses
# 0x1000000000 - 0x2000000000, reserved for system/cpu mappings
# VA space is 48bits.
low_uvm_vaddr_allocator: BumpAllocator = BumpAllocator(size=0x1000000000, base=0x8000000000 if OSX else 0x1000000000, wrap=False)
uvm_vaddr_allocator: BumpAllocator = BumpAllocator(size=(1 << 48) - 1, base=low_uvm_vaddr_allocator.base + low_uvm_vaddr_allocator.size, wrap=False)
host_object_enumerator: int = 0x1000
def _new_gpu_fd(self):
fd_dev = HWInterface(f"/dev/nvidia{NVDevice.gpus_info[self.device_id].minor_number}", os.O_RDWR | os.O_CLOEXEC)
nv_iowr(fd_dev, nv_gpu.NV_ESC_REGISTER_FD, nv_gpu.nv_ioctl_register_fd_t(ctl_fd=self.fd_ctl.fd))
return fd_dev
def _gpu_map_to_cpu(self, memory_handle, size, target=None, flags=0, system=False):
fd_dev = self._new_gpu_fd() if not system else HWInterface("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC)
made = nv_gpu.nv_ioctl_nvos33_parameters_with_fd(fd=fd_dev.fd,
params=nv_gpu.NVOS33_PARAMETERS(hClient=self.root, hDevice=self.nvdevice, hMemory=memory_handle, length=size, flags=flags))
nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_MAP_MEMORY, made)
if made.params.status != 0: raise RuntimeError(f"_gpu_map_to_cpu returned {get_error_str(made.params.status)}")
return fd_dev.mmap(target, size, mmap.PROT_READ|mmap.PROT_WRITE, mmap.MAP_SHARED | (MAP_FIXED if target is not None else 0), 0)
def _gpu_alloc(self, size:int, host=False, uncached=False, cpu_access=False, contiguous=False, map_flags=0, tag="") -> HCQBuffer:
# Uncached memory is "system". Use huge pages only for gpu memory.
page_size = (4 << (12 if OSX else 10)) if uncached or host else ((2 << 20) if size >= (8 << 20) else (4 << (12 if OSX else 10)))
size = round_up(size, page_size)
va_addr = self._alloc_gpu_vaddr(size, alignment=page_size, force_low=cpu_access)
if host:
va_addr = HWInterface.anon_mmap(va_addr, size, mmap.PROT_READ | mmap.PROT_WRITE, MAP_FIXED | mmap.MAP_SHARED | mmap.MAP_ANONYMOUS, 0)
flags = (nv_gpu.NVOS02_FLAGS_PHYSICALITY_NONCONTIGUOUS << 4) | (nv_gpu.NVOS02_FLAGS_COHERENCY_CACHED << 12) \
| (nv_gpu.NVOS02_FLAGS_MAPPING_NO_MAP << 30)
NVDevice.host_object_enumerator += 1
made = nv_gpu.nv_ioctl_nvos02_parameters_with_fd(params=nv_gpu.NVOS02_PARAMETERS(hRoot=self.root, hObjectParent=self.nvdevice, flags=flags,
hObjectNew=NVDevice.host_object_enumerator, hClass=nv_gpu.NV01_MEMORY_SYSTEM_OS_DESCRIPTOR, pMemory=va_addr, limit=size-1), fd=-1)
nv_iowr(self.fd_dev, nv_gpu.NV_ESC_RM_ALLOC_MEMORY, made)
if made.params.status != 0: raise RuntimeError(f"host alloc returned {get_error_str(made.params.status)}")
mem_handle = made.params.hObjectNew
else:
attr = ((nv_gpu.NVOS32_ATTR_PHYSICALITY_CONTIGUOUS if contiguous else nv_gpu.NVOS32_ATTR_PHYSICALITY_ALLOW_NONCONTIGUOUS) << 27) \
| (nv_gpu.NVOS32_ATTR_PAGE_SIZE_HUGE if page_size > 0x1000 else 0) << 23 | ((nv_gpu.NVOS32_ATTR_LOCATION_PCI if uncached else 0) << 25)
attr2 = ((nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_NO if uncached else nv_gpu.NVOS32_ATTR2_GPU_CACHEABLE_YES) << 2) \
| ((nv_gpu.NVOS32_ATTR2_PAGE_SIZE_HUGE_2MB if page_size > 0x1000 else 0) << 20) | nv_gpu.NVOS32_ATTR2_ZBC_PREFER_NO_ZBC
fl = nv_gpu.NVOS32_ALLOC_FLAGS_MAP_NOT_REQUIRED | nv_gpu.NVOS32_ALLOC_FLAGS_MEMORY_HANDLE_PROVIDED | nv_gpu.NVOS32_ALLOC_FLAGS_ALIGNMENT_FORCE \
| nv_gpu.NVOS32_ALLOC_FLAGS_IGNORE_BANK_PLACEMENT | (nv_gpu.NVOS32_ALLOC_FLAGS_PERSISTENT_VIDMEM if not uncached else 0)
alloc_func = nv_gpu.NV1_MEMORY_SYSTEM if uncached else nv_gpu.NV1_MEMORY_USER
alloc_params = nv_gpu.NV_MEMORY_ALLOCATION_PARAMS(owner=self.root, alignment=page_size, offset=0, limit=size-1, format=6, size=size,
type=nv_gpu.NVOS32_TYPE_NOTIFIER if uncached else nv_gpu.NVOS32_TYPE_IMAGE, attr=attr, attr2=attr2, flags=fl)
mem_handle = rm_alloc(self.fd_ctl, alloc_func, self.root, self.nvdevice, alloc_params).hObjectNew
if cpu_access: va_addr = self._gpu_map_to_cpu(mem_handle, size, target=va_addr, flags=map_flags, system=uncached)
return self._gpu_uvm_map(va_addr, size, mem_handle, has_cpu_mapping=cpu_access or host, tag=tag)
def _gpu_free(self, mem:HCQBuffer):
if mem.meta.hMemory > NVDevice.host_object_enumerator: # not a host object, clear phys mem.
made = nv_gpu.NVOS00_PARAMETERS(hRoot=self.root, hObjectParent=self.nvdevice, hObjectOld=mem.meta.hMemory)
nv_iowr(self.fd_ctl, nv_gpu.NV_ESC_RM_FREE, made)
if made.status != 0: raise RuntimeError(f"_gpu_free returned {get_error_str(made.status)}")
self._debug_mappings.pop((cast(int, mem.va_addr), mem.size))
uvm.free(self.fd_uvm, base=cast(int, mem.va_addr), length=mem.size)
if mem.meta.has_cpu_mapping: HWInterface.munmap(cast(int, mem.va_addr), mem.size)
def _gpu_uvm_map(self, va_base, size, mem_handle, create_range=True, has_cpu_mapping=False, tag="") -> HCQBuffer:
if create_range: uvm.create_external_range(self.fd_uvm, base=va_base, length=size)
attrs = (nv_gpu.struct_c__SA_UvmGpuMappingAttributes*256)(nv_gpu.struct_c__SA_UvmGpuMappingAttributes(gpuUuid=self.gpu_uuid, gpuMappingType=1))
# NOTE: va_addr is set to make rawbufs compatible with HCQBuffer protocol.
self._debug_mappings[(va_base, size)] = tag
return HCQBuffer(va_base, size, meta=uvm.map_external_allocation(self.fd_uvm, base=va_base, length=size, rmCtrlFd=self.fd_ctl.fd,
hClient=self.root, hMemory=mem_handle, gpuAttributesCount=1, perGpuAttributes=attrs,
mapped_gpu_ids=[self.gpu_uuid], has_cpu_mapping=has_cpu_mapping))
def _gpu_map(self, mem:HCQBuffer):
if self.gpu_uuid in mem.meta.mapped_gpu_ids: return
mem.meta.mapped_gpu_ids.append(self.gpu_uuid)
self._gpu_uvm_map(mem.va_addr, mem.size, mem.meta.hMemory, create_range=False, tag="p2p mem")
def _alloc_gpu_vaddr(self, size, alignment=(4 << 10), force_low=False):
return NVDevice.low_uvm_vaddr_allocator.alloc(size, alignment) if force_low else NVDevice.uvm_vaddr_allocator.alloc(size, alignment)
def _setup_nvclasses(self):
classlist = memoryview(bytearray(100 * 4)).cast('I')
clsinfo = rmctrl.gpu_get_classlist(self.fd_ctl, self.root, self.nvdevice, numClasses=100, classList=mv_address(classlist))
self.nvclasses = {classlist[i] for i in range(clsinfo.numClasses)}
self.compute_class = next(clss for clss in [nv_gpu.ADA_COMPUTE_A, nv_gpu.AMPERE_COMPUTE_B] if clss in self.nvclasses)
def __init__(self, device:str=""):
if NVDevice.root is None:
NVDevice.fd_ctl = HWInterface("/dev/nvidiactl", os.O_RDWR | os.O_CLOEXEC)
NVDevice.fd_uvm = HWInterface("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC)
self.fd_uvm_2 = HWInterface("/dev/nvidia-uvm", os.O_RDWR | os.O_CLOEXEC)
NVDevice.root = rm_alloc(self.fd_ctl, nv_gpu.NV01_ROOT_CLIENT, 0, 0, None).hObjectNew
uvm.initialize(self.fd_uvm)
with contextlib.suppress(RuntimeError): uvm.mm_initialize(self.fd_uvm_2, uvmFd=self.fd_uvm.fd) # this error is okay, CUDA hits it too
nv_iowr(NVDevice.fd_ctl, nv_gpu.NV_ESC_CARD_INFO, gpus_info:=(nv_gpu.nv_ioctl_card_info_t*64)())
visible_devices = [int(x) for x in (getenv('VISIBLE_DEVICES', getenv('CUDA_VISIBLE_DEVICES', ''))).split(',') if x.strip()]
NVDevice.gpus_info = [gpus_info[x] for x in visible_devices] if visible_devices else gpus_info
self.device_id = int(device.split(":")[1]) if ":" in device else 0
if self.device_id >= len(NVDevice.gpus_info) or not NVDevice.gpus_info[self.device_id].valid:
raise RuntimeError(f"No device found for {device}. Requesting more devices than the system has?")
self.gpu_info = rmctrl.gpu_get_id_info_v2(self.fd_ctl, self.root, self.root, gpuId=NVDevice.gpus_info[self.device_id].gpu_id)
self.gpu_minor = NVDevice.gpus_info[self.device_id].minor_number
self.fd_dev = self._new_gpu_fd()
device_params = nv_gpu.NV0080_ALLOC_PARAMETERS(deviceId=self.gpu_info.deviceInstance, hClientShare=self.root,
vaMode=nv_gpu.NV_DEVICE_ALLOCATION_VAMODE_MULTIPLE_VASPACES)
self.nvdevice = rm_alloc(self.fd_ctl, nv_gpu.NV01_DEVICE_0, self.root, self.root, device_params).hObjectNew
self.subdevice = rm_alloc(self.fd_ctl, nv_gpu.NV20_SUBDEVICE_0, self.root, self.nvdevice, None).hObjectNew
self.usermode = rm_alloc(self.fd_ctl, nv_gpu.TURING_USERMODE_A, self.root, self.subdevice, None).hObjectNew
self.gpu_mmio = to_mv(self._gpu_map_to_cpu(self.usermode, mmio_sz:=0x10000, flags=2), mmio_sz).cast("I")
self._setup_nvclasses()
self._debug_mappings: dict[tuple[int, int], str] = dict()
rmctrl.perf_boost(self.fd_ctl, self.root, self.subdevice, duration=0xffffffff, flags=((nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CUDA_YES << 4) | \
(nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CUDA_PRIORITY_HIGH << 6) | (nv_gpu.NV2080_CTRL_PERF_BOOST_FLAGS_CMD_BOOST_TO_MAX << 0)))
vaspace_params = nv_gpu.NV_VASPACE_ALLOCATION_PARAMETERS(vaBase=0x1000, vaSize=0x1fffffb000000,
flags=nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_ENABLE_PAGE_FAULTING | nv_gpu.NV_VASPACE_ALLOCATION_FLAGS_IS_EXTERNALLY_OWNED)
vaspace = rm_alloc(self.fd_ctl, nv_gpu.FERMI_VASPACE_A, self.root, self.nvdevice, vaspace_params).hObjectNew
raw_uuid = rmctrl.gpu_get_gid_info(self.fd_ctl, self.root, self.subdevice, flags=nv_gpu.NV2080_GPU_CMD_GPU_GET_GID_FLAGS_FORMAT_BINARY, length=16)
self.gpu_uuid = nv_gpu.struct_nv_uuid(uuid=(ctypes.c_ubyte*16)(*[raw_uuid.data[i] for i in range(16)]))
uvm.register_gpu(self.fd_uvm, rmCtrlFd=-1, gpu_uuid=self.gpu_uuid)
uvm.register_gpu_vaspace(self.fd_uvm, gpuUuid=self.gpu_uuid, rmCtrlFd=self.fd_ctl.fd, hClient=self.root, hVaSpace=vaspace)
for dev in cast(list[NVDevice], self.devices):
try: uvm.enable_peer_access(self.fd_uvm, gpuUuidA=self.gpu_uuid, gpuUuidB=dev.gpu_uuid)
except RuntimeError as e: raise RuntimeError(str(e) + f". Make sure GPUs #{self.gpu_minor} & #{dev.gpu_minor} have P2P enabled between.") from e
channel_params = nv_gpu.NV_CHANNEL_GROUP_ALLOCATION_PARAMETERS(engineType=nv_gpu.NV2080_ENGINE_TYPE_GRAPHICS)
channel_group = rm_alloc(self.fd_ctl, nv_gpu.KEPLER_CHANNEL_GROUP_A, self.root, self.nvdevice, channel_params).hObjectNew
gpfifo_area = self._gpu_alloc(0x200000, contiguous=True, cpu_access=True, map_flags=0x10d0000, tag="gpfifo")
ctxshare_params = nv_gpu.NV_CTXSHARE_ALLOCATION_PARAMETERS(hVASpace=vaspace, flags=nv_gpu.NV_CTXSHARE_ALLOCATION_FLAGS_SUBCONTEXT_ASYNC)
ctxshare = rm_alloc(self.fd_ctl, nv_gpu.FERMI_CONTEXT_SHARE_A, self.root, channel_group, ctxshare_params).hObjectNew
self.compute_gpfifo = self._new_gpu_fifo(gpfifo_area, ctxshare, channel_group, offset=0, entries=0x10000, enable_debug=True)
self.dma_gpfifo = self._new_gpu_fifo(gpfifo_area, ctxshare, channel_group, offset=0x100000, entries=0x10000)
rmctrl.gpfifo_schedule(self.fd_ctl, self.root, channel_group, bEnable=1)
self.cmdq_page:HCQBuffer = self._gpu_alloc(0x200000, cpu_access=True, tag="cmdq")
self.cmdq_allocator = BumpAllocator(size=self.cmdq_page.size, base=cast(int, self.cmdq_page.va_addr), wrap=True)
self.cmdq: memoryview = to_mv(cast(int, self.cmdq_page.va_addr), 0x200000).cast("I")
self.num_gpcs, self.num_tpc_per_gpc, self.num_sm_per_tpc, self.max_warps_per_sm, self.sm_version = self._query_gpu_info('num_gpcs',
'num_tpc_per_gpc', 'num_sm_per_tpc', 'max_warps_per_sm', 'sm_version')
self.arch: str = f"sm_{(self.sm_version>>8)&0xff}{(val>>4) if (val:=self.sm_version&0xff) > 0xf else val}"
compiler_t = (PTXCompiler if PTX else CUDACompiler) if MOCKGPU else (NVPTXCompiler if PTX else NVCompiler)
super().__init__(device, NVAllocator(self), PTXRenderer(self.arch, device="NV") if PTX else NVRenderer(self.arch), compiler_t(self.arch),
functools.partial(NVProgram, self), NVSignal, NVComputeQueue, NVCopyQueue)
self._setup_gpfifos()
def _new_gpu_fifo(self, gpfifo_area, ctxshare, channel_group, offset=0, entries=0x400, enable_debug=False) -> GPFifo:
notifier = self._gpu_alloc(48 << 20, uncached=True)
params = nv_gpu.NV_CHANNELGPFIFO_ALLOCATION_PARAMETERS(hObjectError=notifier.meta.hMemory, hObjectBuffer=gpfifo_area.meta.hMemory,
gpFifoOffset=gpfifo_area.va_addr+offset, gpFifoEntries=entries, hContextShare=ctxshare,
hUserdMemory=(ctypes.c_uint32*8)(gpfifo_area.meta.hMemory), userdOffset=(ctypes.c_uint64*8)(entries*8+offset))
gpfifo = rm_alloc(self.fd_ctl, nv_gpu.AMPERE_CHANNEL_GPFIFO_A, self.root, channel_group, params).hObjectNew
comp = rm_alloc(self.fd_ctl, self.compute_class, self.root, gpfifo, None).hObjectNew
rm_alloc(self.fd_ctl, nv_gpu.AMPERE_DMA_COPY_B, self.root, gpfifo, None)
if enable_debug:
self.debug_compute_obj, self.debug_channel = comp, gpfifo
debugger_params = nv_gpu.NV83DE_ALLOC_PARAMETERS(hAppClient=self.root, hClass3dObject=self.debug_compute_obj)
self.debugger = rm_alloc(self.fd_ctl, nv_gpu.GT200_DEBUGGER, self.root, self.nvdevice, debugger_params).hObjectNew
ws_token_params = rmctrl.gpfifo_get_work_submit_token(self.fd_ctl, self.root, gpfifo, workSubmitToken=-1)
assert ws_token_params.workSubmitToken != -1
channel_base = self._alloc_gpu_vaddr(0x4000000, force_low=True)
uvm.register_channel(self.fd_uvm, gpuUuid=self.gpu_uuid, rmCtrlFd=self.fd_ctl.fd, hClient=self.root,
hChannel=gpfifo, base=channel_base, length=0x4000000)
return GPFifo(ring=to_mv(gpfifo_area.va_addr + offset, entries * 8).cast("Q"), entries_count=entries, token=ws_token_params.workSubmitToken,
controls=nv_gpu.AmpereAControlGPFifo.from_address(gpfifo_area.va_addr + offset + entries * 8))
def _query_gpu_info(self, *reqs):
nvrs = [getattr(nv_gpu,'NV2080_CTRL_GR_INFO_INDEX_'+r.upper(), getattr(nv_gpu,'NV2080_CTRL_GR_INFO_INDEX_LITTER_'+r.upper(),None)) for r in reqs]
infos = (nv_gpu.NV2080_CTRL_GR_INFO*len(nvrs))(*[nv_gpu.NV2080_CTRL_GR_INFO(index=nvr) for nvr in nvrs])
rmctrl.gr_get_info(self.fd_ctl, self.root, self.subdevice, grInfoListSize=len(infos), grInfoList=ctypes.addressof(infos))
return [x.data for x in infos]
def _setup_gpfifos(self):
# Set windows addresses to not collide with other allocated buffers.
self.shared_mem_window, self.local_mem_window, self.slm_per_thread, self.shader_local_mem = 0xfe000000, 0xff000000, 0, None
NVComputeQueue().setup(compute_class=self.compute_class, local_mem_window=self.local_mem_window, shared_mem_window=self.shared_mem_window) \
.signal(self.timeline_signal, self.timeline_value).submit(self)
cast(NVCopyQueue, NVCopyQueue().wait(self.timeline_signal, self.timeline_value)) \
.setup(copy_class=nv_gpu.AMPERE_DMA_COPY_B) \
.signal(self.timeline_signal, self.timeline_value + 1).submit(self)
self.timeline_value += 2
def _ensure_has_local_memory(self, required):
if self.slm_per_thread >= required or ((maxlm:=getenv("NV_MAX_LOCAL_MEMORY_PER_THREAD")) > 0 and required >= maxlm): return
self.slm_per_thread, old_slm_per_thread = round_up(required, 32), self.slm_per_thread
bytes_per_tpc = round_up(round_up(self.slm_per_thread * 32, 0x200) * self.max_warps_per_sm * self.num_sm_per_tpc, 0x8000)
self.shader_local_mem, ok = self._realloc(self.shader_local_mem, round_up(bytes_per_tpc*self.num_tpc_per_gpc*self.num_gpcs, 0x20000))
# Realloc failed, restore the old value.
if not ok: self.slm_per_thread = old_slm_per_thread
cast(NVComputeQueue, NVComputeQueue().wait(self.timeline_signal, self.timeline_value - 1)) \
.setup(local_mem=self.shader_local_mem.va_addr, local_mem_tpc_bytes=bytes_per_tpc) \
.signal(self.timeline_signal, self.next_timeline()).submit(self)
def invalidate_caches(self):
rmctrl.fb_flush_gpu_cache(self.fd_ctl, self.root, self.subdevice,
flags=((nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_WRITE_BACK_YES << 2) | (nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_INVALIDATE_YES << 3) |
(nv_gpu.NV2080_CTRL_FB_FLUSH_GPU_CACHE_FLAGS_FLUSH_MODE_FULL_CACHE << 4)))
def on_device_hang(self):
# Prepare fault report.
# TODO: Restore the GPU using NV83DE_CTRL_CMD_CLEAR_ALL_SM_ERROR_STATES if needed.
report = []
sm_errors = rmctrl.debug_read_all_sm_error_states(self.fd_ctl, self.root, self.debugger, hTargetChannel=self.debug_channel, numSMsToRead=100)
if sm_errors.mmuFault.valid:
mmu_info = rmctrl.debug_read_mmu_fault_info(self.fd_ctl, self.root, self.debugger)
for i in range(mmu_info.count):
pfinfo = mmu_info.mmuFaultInfoList[i]
report += [f"MMU fault: 0x{pfinfo.faultAddress:X} | {NV_PFAULT_FAULT_TYPE[pfinfo.faultType]} | {NV_PFAULT_ACCESS_TYPE[pfinfo.accessType]}"]
if DEBUG >= 5:
report += ["GPU mappings:\n"+"\n".join(f"\t0x{x:X} - 0x{x+y-1:X} | {self._debug_mappings[(x,y)]}" for x,y in sorted(self._debug_mappings))]
else:
for i, e in enumerate(sm_errors.smErrorStateArray):
if e.hwwGlobalEsr or e.hwwWarpEsr: report += [f"SM {i} fault: esr={e.hwwGlobalEsr} warp_esr={e.hwwWarpEsr} warp_pc={e.hwwWarpEsrPc64}"]
raise RuntimeError("\n".join(report))