openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

374 lines
22 KiB

from __future__ import annotations
import os, ctypes, functools, mmap, struct, array, math, sys
assert sys.platform != 'win32'
from types import SimpleNamespace
from typing import Any, cast, ClassVar
from tinygrad.device import BufferSpec
from tinygrad.runtime.support.hcq import HCQBuffer, HWQueue, HCQProgram, HCQCompiled, HCQAllocatorBase, HCQSignal, HCQArgsState, BumpAllocator
from tinygrad.runtime.support.hcq import HWInterface
from tinygrad.runtime.autogen import kgsl, adreno
from tinygrad.runtime.ops_gpu import CLCompiler, CLDevice
from tinygrad.renderer.cstyle import QCOMRenderer
from tinygrad.helpers import getenv, mv_address, to_mv, round_up, data64_le, prod, fromimport
if getenv("IOCTL"): import extra.qcom_gpu_driver.opencl_ioctl # noqa: F401 # pylint: disable=unused-import
BUFTYPE_BUF, BUFTYPE_TEX, BUFTYPE_IBO = 0, 1, 2
#Parse C-style defines: <regname>_<field_x>__SHIFT and <regname>_<field_y>__MASK from the adreno module into the following format:
# qreg.<regname>(<field_x>=..., <field_y>=..., ..., <field_n>=...)
def _qreg_exec(reg, __val=0, **kwargs):
for k, v in kwargs.items():
__val |= (getattr(adreno, f'{reg[4:]}_{k.upper()}') if v else 0) if type(v) is bool else (v << getattr(adreno, f'{reg[4:]}_{k.upper()}__SHIFT'))
return __val
qreg: Any = type("QREG", (object,), {name[4:].lower(): functools.partial(_qreg_exec, name) for name in adreno.__dict__.keys() if name[:4] == 'REG_'})
def next_power2(x): return 1 if x == 0 else 1 << (x - 1).bit_length()
def parity(val: int):
for i in range(4,1,-1): val ^= val >> (1 << i)
return (~0x6996 >> (val & 0xf)) & 1
def pkt7_hdr(opcode: int, cnt: int): return adreno.CP_TYPE7_PKT | cnt & 0x3FFF | parity(cnt) << 15 | (opcode & 0x7F) << 16 | parity(opcode) << 23
def pkt4_hdr(reg: int, cnt: int): return adreno.CP_TYPE4_PKT | cnt & 0x7F | parity(cnt) << 7 | (reg & 0x3FFFF) << 8 | parity(reg) << 27
class QCOMCompiler(CLCompiler):
def __init__(self, device:str=""): super().__init__(CLDevice(device), 'compile_qcom')
def disassemble(self, lib:bytes): fromimport('extra.disassemblers.adreno', 'disasm')(lib)
class QCOMSignal(HCQSignal):
def __init__(self, base_addr:int|None=None, **kwargs):
super().__init__(base_addr, **kwargs, timestamp_divider=19.2, dev_t=QCOMDevice)
def _sleep(self, time_spent_waiting_ms:int):
# Sleep only for only timeline signals. Do it immediately to free cpu.
if self.timeline_for_device is not None:
kgsl.IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID(self.timeline_for_device.fd, context_id=self.timeline_for_device.ctx,
timestamp=self.timeline_for_device.last_cmd, timeout=0xffffffff)
class QCOMComputeQueue(HWQueue):
def __del__(self):
if self.binded_device is not None: self.binded_device.allocator.free(self.hw_page, self.hw_page.size, BufferSpec(cpu_access=True, nolru=True))
def cmd(self, opcode: int, *vals: int): self.q(pkt7_hdr(opcode, len(vals)), *vals)
def reg(self, reg: int, *vals: int): self.q(pkt4_hdr(reg, len(vals)), *vals)
def _cache_flush(self, write_back=True, invalidate=False, sync=True, memsync=False):
# TODO: 7xx support.
if write_back: self.cmd(adreno.CP_EVENT_WRITE, adreno.CACHE_FLUSH_TS, *data64_le(QCOMDevice.dummy_addr), 0) # dirty cache write-back.
if invalidate: self.cmd(adreno.CP_EVENT_WRITE, adreno.CACHE_INVALIDATE) # invalidate cache lines (following reads from RAM).
if memsync: self.cmd(adreno.CP_WAIT_MEM_WRITES)
if sync: self.cmd(adreno.CP_WAIT_FOR_IDLE)
def memory_barrier(self):
self._cache_flush(write_back=True, invalidate=True, sync=True, memsync=True)
return self
def signal(self, signal:QCOMSignal, value=0, ts=False):
self.cmd(adreno.CP_WAIT_FOR_IDLE)
if QCOMDevice.gpu_id < 700:
self.cmd(adreno.CP_EVENT_WRITE, qreg.cp_event_write_0(event=adreno.CACHE_FLUSH_TS, timestamp=ts),
*data64_le(signal.timestamp_addr if ts else signal.value_addr), qreg.cp_event_write_3(value & 0xFFFFFFFF))
self._cache_flush(write_back=True, invalidate=False, sync=False, memsync=False)
else:
# TODO: support devices starting with 8 Gen 1. Also, 700th series have convenient CP_GLOBAL_TIMESTAMP and CP_LOCAL_TIMESTAMP
raise RuntimeError('CP_EVENT_WRITE7 is not supported')
return self
def timestamp(self, signal:QCOMSignal): return self.signal(signal, 0, ts=True)
def wait(self, signal:QCOMSignal, value=0):
self.cmd(adreno.CP_WAIT_REG_MEM, qreg.cp_wait_reg_mem_0(function=adreno.WRITE_GE, poll=adreno.POLL_MEMORY),*data64_le(signal.value_addr),
qreg.cp_wait_reg_mem_3(ref=value&0xFFFFFFFF), qreg.cp_wait_reg_mem_4(mask=0xFFFFFFFF), qreg.cp_wait_reg_mem_5(delay_loop_cycles=32))
return self
def _build_gpu_command(self, dev:QCOMDevice, hw_addr=None):
to_mv((hw_page_addr:=hw_addr or dev.cmd_buf_allocator.alloc(len(self._q) * 4)), len(self._q) * 4).cast('I')[:] = array.array('I', self._q)
obj = kgsl.struct_kgsl_command_object(gpuaddr=hw_page_addr, size=len(self._q) * 4, flags=kgsl.KGSL_CMDLIST_IB)
submit_req = kgsl.struct_kgsl_gpu_command(cmdlist=ctypes.addressof(obj), numcmds=1, context_id=dev.ctx,
cmdsize=ctypes.sizeof(kgsl.struct_kgsl_command_object))
return submit_req, obj
def bind(self, dev:QCOMDevice):
self.binded_device = dev
self.hw_page = dev.allocator.alloc(len(self._q) * 4, BufferSpec(cpu_access=True, nolru=True))
self.submit_req, self.obj = self._build_gpu_command(self.binded_device, self.hw_page.va_addr)
# From now on, the queue is on the device for faster submission.
self._q = to_mv(self.obj.gpuaddr, len(self._q) * 4).cast("I")
def _submit(self, dev:QCOMDevice):
if self.binded_device == dev: submit_req = self.submit_req
else: submit_req, _ = self._build_gpu_command(dev)
dev.last_cmd = kgsl.IOCTL_KGSL_GPU_COMMAND(dev.fd, __payload=submit_req).timestamp
def exec(self, prg:QCOMProgram, args_state:QCOMArgsState, global_size, local_size):
self.bind_args_state(args_state)
def cast_int(x, ceil=False): return (math.ceil(x) if ceil else int(x)) if isinstance(x, float) else x
global_size_mp = [cast_int(g*l) for g,l in zip(global_size, local_size)]
self.cmd(adreno.CP_SET_MARKER, qreg.a6xx_cp_set_marker_0(mode=adreno.RM6_COMPUTE))
self.reg(adreno.REG_A6XX_HLSQ_INVALIDATE_CMD, qreg.a6xx_hlsq_invalidate_cmd(cs_state=True, cs_ibo=True))
self.reg(adreno.REG_A6XX_HLSQ_INVALIDATE_CMD, 0x0)
self.reg(adreno.REG_A6XX_SP_CS_TEX_COUNT, qreg.a6xx_sp_cs_tex_count(0x80))
self.reg(adreno.REG_A6XX_SP_CS_IBO_COUNT, qreg.a6xx_sp_cs_ibo_count(0x40))
self.reg(adreno.REG_A6XX_SP_MODE_CONTROL, qreg.a6xx_sp_mode_control(isammode=adreno.ISAMMODE_CL))
self.reg(adreno.REG_A6XX_SP_PERFCTR_ENABLE, qreg.a6xx_sp_perfctr_enable(cs=True))
self.reg(adreno.REG_A6XX_SP_TP_MODE_CNTL, qreg.a6xx_sp_tp_mode_cntl(isammode=adreno.ISAMMODE_CL, unk3=2))
self.reg(adreno.REG_A6XX_TPL1_DBG_ECO_CNTL, 0)
self.cmd(adreno.CP_WAIT_FOR_IDLE)
self.reg(adreno.REG_A6XX_HLSQ_CS_NDRANGE_0,
qreg.a6xx_hlsq_cs_ndrange_0(kerneldim=3, localsizex=local_size[0] - 1, localsizey=local_size[1] - 1, localsizez=local_size[2] - 1),
global_size_mp[0], 0, global_size_mp[1], 0, global_size_mp[2], 0, 0xccc0cf, 0xfc | qreg.a6xx_hlsq_cs_cntl_1(threadsize=adreno.THREAD64),
cast_int(global_size[0], ceil=True), cast_int(global_size[1], ceil=True), cast_int(global_size[2], ceil=True))
self.reg(adreno.REG_A6XX_SP_CS_CTRL_REG0,
qreg.a6xx_sp_cs_ctrl_reg0(threadsize=adreno.THREAD64, halfregfootprint=prg.hregs, fullregfootprint=prg.fregs, branchstack=prg.brnchstck),
qreg.a6xx_sp_cs_unknown_a9b1(unk6=True, shared_size=prg.shared_size), 0, prg.prg_offset, *data64_le(prg.lib_gpu.va_addr),
qreg.a6xx_sp_cs_pvt_mem_param(memsizeperitem=prg.pvtmem_size_per_item), *data64_le(prg.dev._stack.va_addr),
qreg.a6xx_sp_cs_pvt_mem_size(totalpvtmemsize=prg.pvtmem_size_total))
self.cmd(adreno.CP_LOAD_STATE6_FRAG, qreg.cp_load_state6_0(state_type=adreno.ST_CONSTANTS, state_src=adreno.SS6_INDIRECT,
state_block=adreno.SB6_CS_SHADER, num_unit=1024 // 4),
*data64_le(args_state.ptr))
self.cmd(adreno.CP_LOAD_STATE6_FRAG, qreg.cp_load_state6_0(state_type=adreno.ST_SHADER, state_src=adreno.SS6_INDIRECT,
state_block=adreno.SB6_CS_SHADER, num_unit=round_up(prg.image_size, 128) // 128),
*data64_le(prg.lib_gpu.va_addr))
self.reg(adreno.REG_A6XX_HLSQ_CONTROL_2_REG, 0xfcfcfcfc, 0xfcfcfcfc, 0xfcfcfcfc, 0xfc, qreg.a6xx_hlsq_cs_cntl(constlen=1024 // 4, enabled=True))
self.reg(adreno.REG_A6XX_SP_CS_PVT_MEM_HW_STACK_OFFSET, qreg.a6xx_sp_cs_pvt_mem_hw_stack_offset(prg.hw_stack_offset))
self.reg(adreno.REG_A6XX_SP_CS_INSTRLEN, qreg.a6xx_sp_cs_instrlen(prg.image_size // 4))
if args_state.prg.samp_cnt > 0:
self.cmd(adreno.CP_LOAD_STATE6_FRAG, qreg.cp_load_state6_0(state_type=adreno.ST_SHADER, state_src=adreno.SS6_INDIRECT,
state_block=adreno.SB6_CS_TEX, num_unit=args_state.prg.samp_cnt),
*data64_le(args_state.ptr + args_state.prg.samp_off))
self.reg(adreno.REG_A6XX_SP_CS_TEX_SAMP, *data64_le(args_state.ptr + args_state.prg.samp_off))
self.reg(adreno.REG_A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR, *data64_le(prg.dev.border_color_buf.va_addr))
if args_state.prg.tex_cnt > 0:
self.cmd(adreno.CP_LOAD_STATE6_FRAG, qreg.cp_load_state6_0(state_type=adreno.ST_CONSTANTS, state_src=adreno.SS6_INDIRECT,
state_block=adreno.SB6_CS_TEX, num_unit=min(16, args_state.prg.tex_cnt)),
*data64_le(args_state.ptr + args_state.prg.tex_off))
self.reg(adreno.REG_A6XX_SP_CS_TEX_CONST, *data64_le(args_state.ptr + args_state.prg.tex_off))
if args_state.prg.ibo_cnt > 0:
self.cmd(adreno.CP_LOAD_STATE6_FRAG, qreg.cp_load_state6_0(state_type=adreno.ST6_IBO, state_src=adreno.SS6_INDIRECT,
state_block=adreno.SB6_CS_SHADER, num_unit=args_state.prg.ibo_cnt),
*data64_le(args_state.ptr + args_state.prg.ibo_off))
self.reg(adreno.REG_A6XX_SP_CS_IBO, *data64_le(args_state.ptr + args_state.prg.ibo_off))
self.reg(adreno.REG_A6XX_SP_CS_CONFIG,
qreg.a6xx_sp_cs_config(enabled=True, nsamp=args_state.prg.samp_cnt, ntex=args_state.prg.tex_cnt, nibo=args_state.prg.ibo_cnt))
self.cmd(adreno.CP_RUN_OPENCL, 0)
self._cache_flush(write_back=True, invalidate=False, sync=False, memsync=False)
return self
class QCOMArgsState(HCQArgsState):
def __init__(self, ptr:int, prg:QCOMProgram, bufs:tuple[HCQBuffer, ...], vals:tuple[int, ...]=()):
super().__init__(ptr, prg, bufs, vals=vals)
if len(bufs) + len(vals) != len(prg.buf_info): raise RuntimeError(f'incorrect args size given={len(bufs)+len(vals)} != want={len(prg.buf_info)}')
self.buf_info, self.args_info, self.args_view = prg.buf_info[:len(bufs)], prg.buf_info[len(bufs):], to_mv(ptr, prg.kernargs_alloc_size).cast('Q')
ctypes.memset(self.ptr, 0, prg.kernargs_alloc_size)
for cnst_val, cnst_off, cnst_sz in prg.consts_info: to_mv(self.ptr + cnst_off, cnst_sz)[:] = cnst_val.to_bytes(cnst_sz, byteorder='little')
if prg.samp_cnt > 0: to_mv(self.ptr + prg.samp_off, len(prg.samplers) * 4).cast('I')[:] = array.array('I', prg.samplers)
for i, b in enumerate(bufs):
if prg.buf_info[i].type in {BUFTYPE_TEX, BUFTYPE_IBO}:
obj = b.texture_info.desc if prg.buf_info[i].type is BUFTYPE_TEX else b.texture_info.ibo
to_mv(self.ptr + prg.buf_info[i].offset, len(obj) * 4).cast('I')[:] = array.array('I', obj)
self.bind_sints_to_ptr(b.va_addr, ptr=self.ptr + self.buf_info[i].offset + (0 if self.buf_info[i].type is BUFTYPE_BUF else 16), fmt='Q')
for i, v in enumerate(vals): self.bind_sints_to_ptr(v, ptr=self.ptr + self.args_info[i].offset, fmt='I')
class QCOMProgram(HCQProgram):
def __init__(self, dev: QCOMDevice, name: str, lib: bytes):
self.dev: QCOMDevice = dev
self.name, self.lib = name, lib
self._parse_lib()
self.lib_gpu: HCQBuffer = self.dev.allocator.alloc(self.image_size, options=BufferSpec(cpu_access=True, nolru=True))
to_mv(cast(int, self.lib_gpu.va_addr), self.image_size)[:] = self.image
self.pvtmem_size_per_item: int = round_up(self.pvtmem, 512) >> 9
self.pvtmem_size_total: int = self.pvtmem_size_per_item * 128 * 2
self.hw_stack_offset: int = round_up(next_power2(round_up(self.pvtmem, 512)) * 128 * 16, 0x1000)
self.shared_size: int = max(1, (self.shmem - 1) // 1024)
self.max_threads = min(1024, ((384 * 32) // (max(1, (self.fregs + round_up(self.hregs, 2) // 2)) * 128)) * 128)
dev._ensure_stack_size(self.hw_stack_offset * 4)
kernargs_alloc_size = round_up(2048 + (self.tex_cnt + self.ibo_cnt) * 0x40 + self.samp_cnt * 0x10, 0x100)
super().__init__(QCOMArgsState, self.dev, self.name, kernargs_alloc_size=kernargs_alloc_size)
def __call__(self, *bufs, global_size:tuple[int,int,int]=(1,1,1), local_size:tuple[int,int,int]=(1,1,1), vals:tuple[int, ...]=(), wait=False):
if self.max_threads < prod(local_size): raise RuntimeError("Too many resources requested for launch")
if any(g*l>mx for g,l,mx in zip(global_size, local_size, [65536, 65536, 65536])) and any(l>mx for l,mx in zip(local_size, [1024, 1024, 1024])):
raise RuntimeError(f"Invalid global/local dims {global_size=}, {local_size=}")
return super().__call__(*bufs, global_size=global_size, local_size=local_size, vals=vals, wait=wait)
def _parse_lib(self):
def _read_lib(off) -> int: return struct.unpack("I", self.lib[off:off+4])[0]
# Extract image binary
self.image_size = _read_lib(0x100)
self.image = bytearray(self.lib[(image_offset:=_read_lib(0xc0)):image_offset+self.image_size])
# Parse image descriptors
image_desc_off = _read_lib(0x110)
self.prg_offset, self.brnchstck = _read_lib(image_desc_off+0xc4), _read_lib(image_desc_off+0x108) // 2
self.pvtmem, self.shmem = _read_lib(image_desc_off+0xc8), _read_lib(image_desc_off+0xd8)
# Fill up constants and buffers info
self.buf_info, self.consts_info = [], []
# Collect sampler info.
self.samp_cnt = samp_cnt_in_file = _read_lib(image_desc_off + 0xdc)
assert self.samp_cnt <= 1, "Up to one sampler supported"
if self.samp_cnt:
self.samp_cnt += 1
self.samplers = [qreg.a6xx_tex_samp_0(wrap_s=(clamp_mode:=adreno.A6XX_TEX_CLAMP_TO_BORDER), wrap_t=clamp_mode, wrap_r=clamp_mode),
qreg.a6xx_tex_samp_1(unnorm_coords=True, cubemapseamlessfiltoff=True), 0, 0, 0, 0, 0, 0]
# Collect kernel arguments (buffers) info.
bdoff = round_up(image_desc_off + 0x158 + len(self.name), 4) + 8 * samp_cnt_in_file
while bdoff + 32 <= len(self.lib):
length, _, _, offset_words, _, _, _, typ = struct.unpack("IIIIIIII", self.lib[bdoff:bdoff+32])
if length == 0: break
self.buf_info.append(SimpleNamespace(offset=offset_words * 4, type=typ))
bdoff += length
# Setting correct offsets to textures/ibos.
self.tex_cnt, self.ibo_cnt = sum(x.type is BUFTYPE_TEX for x in self.buf_info), sum(x.type is BUFTYPE_IBO for x in self.buf_info)
self.ibo_off, self.tex_off, self.samp_off = 2048, 2048 + 0x40 * self.ibo_cnt, 2048 + 0x40 * self.tex_cnt + 0x40 * self.ibo_cnt
cur_ibo_off, cur_tex_off = self.ibo_off, self.tex_off
for x in self.buf_info:
if x.type is BUFTYPE_IBO: x.offset, cur_ibo_off = cur_ibo_off, cur_ibo_off + 0x40
elif x.type is BUFTYPE_TEX: x.offset, cur_tex_off = cur_tex_off, cur_tex_off + 0x40
if _read_lib(0xb0) != 0: # check if we have constants.
cdoff = _read_lib(0xac)
while cdoff + 40 <= image_offset:
cnst, offset_words, _, is32 = struct.unpack("I", self.lib[cdoff:cdoff+4])[0], *struct.unpack("III", self.lib[cdoff+16:cdoff+28])
self.consts_info.append((cnst, offset_words * (sz_bytes:=(2 << is32)), sz_bytes))
cdoff += 40
# Registers info
reg_desc_off = _read_lib(0x34)
self.fregs, self.hregs = _read_lib(reg_desc_off + 0x14), _read_lib(reg_desc_off + 0x18)
def __del__(self):
if hasattr(self, 'lib_gpu'): self.dev.allocator.free(self.lib_gpu, self.lib_gpu.size, options=BufferSpec(cpu_access=True, nolru=True))
class QCOMTextureInfo:
def __init__(self, pitch:int, real_stride:int, desc:list[int], ibo:list[int]):
self.pitch, self.real_stride, self.desc, self.ibo = pitch, real_stride, desc, ibo
class QCOMAllocator(HCQAllocatorBase):
def _alloc(self, size:int, options:BufferSpec) -> HCQBuffer:
# Recalculate real size for texture
if options.image is not None:
imgw, imgh, itemsize_log = options.image.shape[1], options.image.shape[0], int(math.log2(options.image.itemsize))
pitchalign = max(6, 11 - int(math.log2(imgh))) if imgh > 1 else 6
align_up = max(1, (8 // itemsize_log + 1) - imgh // 32) if pitchalign == 6 else (2 ** (pitchalign - itemsize_log - 2))
granularity = 128 if options.image.itemsize == 4 else 256
pitch_add = (1 << pitchalign) if min(next_power2(imgw), round_up(imgw, granularity)) - align_up + 1 <= imgw and imgw > granularity//2 else 0
pitch = round_up((real_stride:=imgw * 4 * options.image.itemsize), 1 << pitchalign) + pitch_add
size = pitch * imgh
buf = HCQBuffer(options.external_ptr, size) if options.external_ptr else self.dev._gpu_alloc(size)
if options.image is not None:
tex_fmt = adreno.FMT6_32_32_32_32_FLOAT if options.image.itemsize == 4 else adreno.FMT6_16_16_16_16_FLOAT
desc = [qreg.a6xx_tex_const_0(0x8, swiz_x=0, swiz_y=1, swiz_z=2, swiz_w=3, fmt=tex_fmt), qreg.a6xx_tex_const_1(width=imgw, height=imgh),
qreg.a6xx_tex_const_2(type=adreno.A6XX_TEX_2D, pitch=pitch, pitchalign=pitchalign-6), 0,
*data64_le(buf.va_addr), qreg.a6xx_tex_const_6(plane_pitch=0x400000), qreg.a6xx_tex_const_7(13)]
buf.texture_info = QCOMTextureInfo(pitch, real_stride, desc, [desc[0] & (~0xffff), *desc[1:len(desc)]])
return buf
def _do_copy(self, src_addr, dest_addr, src_size, real_size, src_stride, dest_stride, dest_off=0, src_off=0):
while src_off < src_size:
ctypes.memmove(dest_addr+dest_off, src_addr+src_off, real_size)
src_off, dest_off = src_off+src_stride, dest_off+dest_stride
def _copyin(self, dest:HCQBuffer, src:memoryview):
stride, pitch = (src.nbytes, src.nbytes) if (ti:=cast(QCOMTextureInfo, dest.texture_info)) is None else (ti.real_stride, ti.pitch)
self._do_copy(mv_address(src), dest.va_addr, src.nbytes, stride, stride, pitch)
def _copyout(self, dest:memoryview, src:HCQBuffer):
self.dev.synchronize()
stride, pitch = (src.size, src.size) if (ti:=cast(QCOMTextureInfo, src.texture_info)) is None else (ti.real_stride, ti.pitch)
self._do_copy(src.va_addr, mv_address(dest), src.size, stride, pitch, stride)
def _as_buffer(self, src:HCQBuffer) -> memoryview:
self.dev.synchronize()
return to_mv(cast(int, src.va_addr), src.size)
def _free(self, opaque, options:BufferSpec):
self.dev.synchronize()
self.dev._gpu_free(opaque)
class QCOMDevice(HCQCompiled):
devices: ClassVar[list[HCQCompiled]] = []
signal_pages: ClassVar[list[Any]] = []
signal_pool: ClassVar[list[int]] = []
gpu_id: int = 0
dummy_addr: int = 0
def __init__(self, device:str=""):
self.fd = HWInterface('/dev/kgsl-3d0', os.O_RDWR)
QCOMDevice.dummy_addr = cast(int, self._gpu_alloc(0x1000).va_addr)
flags = kgsl.KGSL_CONTEXT_PREAMBLE | kgsl.KGSL_CONTEXT_PWR_CONSTRAINT | kgsl.KGSL_CONTEXT_NO_FAULT_TOLERANCE | kgsl.KGSL_CONTEXT_NO_GMEM_ALLOC \
| kgsl.KGSL_CONTEXT_PRIORITY(8) | kgsl.KGSL_CONTEXT_PREEMPT_STYLE(kgsl.KGSL_CONTEXT_PREEMPT_STYLE_FINEGRAIN)
self.ctx = kgsl.IOCTL_KGSL_DRAWCTXT_CREATE(self.fd, flags=flags).drawctxt_id
self.cmd_buf = self._gpu_alloc(16 << 20)
self.cmd_buf_allocator = BumpAllocator(size=self.cmd_buf.size, base=cast(int, self.cmd_buf.va_addr), wrap=True)
self.border_color_buf = self._gpu_alloc(0x1000, fill_zeroes=True)
self.last_cmd:int = 0
# Set max power
struct.pack_into('IIQQ', pwr:=memoryview(bytearray(0x18)), 0, 1, self.ctx, mv_address(_:=memoryview(array.array('I', [1]))), 4)
kgsl.IOCTL_KGSL_SETPROPERTY(self.fd, type=kgsl.KGSL_PROP_PWR_CONSTRAINT, value=mv_address(pwr), sizebytes=pwr.nbytes)
# Load info about qcom device
info = kgsl.struct_kgsl_devinfo()
kgsl.IOCTL_KGSL_DEVICE_GETPROPERTY(self.fd, type=kgsl.KGSL_PROP_DEVICE_INFO, value=ctypes.addressof(info), sizebytes=ctypes.sizeof(info))
QCOMDevice.gpu_id = ((info.chip_id >> 24) & 0xFF) * 100 + ((info.chip_id >> 16) & 0xFF) * 10 + ((info.chip_id >> 8) & 0xFF)
if QCOMDevice.gpu_id >= 700: raise RuntimeError(f"Unsupported GPU: {QCOMDevice.gpu_id}")
super().__init__(device, QCOMAllocator(self), QCOMRenderer(), QCOMCompiler(device), functools.partial(QCOMProgram, self),
QCOMSignal, QCOMComputeQueue, None)
def _gpu_alloc(self, size:int, flags:int=0, uncached=False, fill_zeroes=False) -> HCQBuffer:
flags |= kgsl.KGSL_MEMALIGN(alignment_hint:=12) | kgsl.KGSL_MEMFLAGS_USE_CPU_MAP
if uncached: flags |= kgsl.KGSL_CACHEMODE(kgsl.KGSL_CACHEMODE_UNCACHED)
alloc = kgsl.IOCTL_KGSL_GPUOBJ_ALLOC(self.fd, size=(bosz:=round_up(size, 1<<alignment_hint)), flags=flags, mmapsize=bosz)
va_addr = self.fd.mmap(0, bosz, mmap.PROT_READ | mmap.PROT_WRITE, mmap.MAP_SHARED, alloc.id * 0x1000)
if fill_zeroes: ctypes.memset(va_addr, 0, size)
return HCQBuffer(va_addr=va_addr, size=size, meta=alloc)
def _gpu_free(self, mem:HCQBuffer):
kgsl.IOCTL_KGSL_GPUOBJ_FREE(self.fd, id=mem.meta.id)
HWInterface.munmap(mem.va_addr, mem.meta.mmapsize)
def _ensure_stack_size(self, sz):
if not hasattr(self, '_stack'): self._stack = self._gpu_alloc(sz)
elif self._stack.size < sz:
self.synchronize()
self._gpu_free(self._stack)
self._stack = self._gpu_alloc(sz)