You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
3.1 KiB
83 lines
3.1 KiB
from common.numpy_fast import interp
|
|
import numpy as np
|
|
from cereal import log
|
|
|
|
CAMERA_OFFSET = 0.06 # m from center car to camera
|
|
TRAJECTORY_SIZE = 33
|
|
|
|
|
|
|
|
class LanePlanner:
|
|
def __init__(self):
|
|
self.ll_t = np.zeros((TRAJECTORY_SIZE,))
|
|
self.ll_x = np.zeros((TRAJECTORY_SIZE,))
|
|
self.lll_y = np.zeros((TRAJECTORY_SIZE,))
|
|
self.rll_y = np.zeros((TRAJECTORY_SIZE,))
|
|
self.lane_width_estimate = 3.7
|
|
self.lane_width_certainty = 1.0
|
|
self.lane_width = 3.7
|
|
|
|
self.lll_prob = 0.
|
|
self.rll_prob = 0.
|
|
self.d_prob = 0.
|
|
|
|
self.lll_std = 0.
|
|
self.rll_std = 0.
|
|
|
|
self.l_lane_change_prob = 0.
|
|
self.r_lane_change_prob = 0.
|
|
|
|
|
|
def parse_model(self, md):
|
|
if len(md.laneLines) == 4 and len(md.laneLines[0].t) == TRAJECTORY_SIZE:
|
|
self.ll_t = (np.array(md.laneLines[1].t) + np.array(md.laneLines[2].t))/2
|
|
# left and right ll x is the same
|
|
self.ll_x = md.laneLines[1].x
|
|
# only offset left and right lane lines; offsetting path does not make sense
|
|
self.lll_y = np.array(md.laneLines[1].y) - CAMERA_OFFSET
|
|
self.rll_y = np.array(md.laneLines[2].y) - CAMERA_OFFSET
|
|
self.lll_prob = md.laneLineProbs[1]
|
|
self.rll_prob = md.laneLineProbs[2]
|
|
self.lll_std = md.laneLineStds[1]
|
|
self.rll_std = md.laneLineStds[2]
|
|
|
|
if len(md.meta.desireState):
|
|
self.l_lane_change_prob = md.meta.desireState[log.LateralPlan.Desire.laneChangeLeft]
|
|
self.r_lane_change_prob = md.meta.desireState[log.LateralPlan.Desire.laneChangeRight]
|
|
|
|
def get_d_path(self, v_ego, path_t, path_xyz):
|
|
# Reduce reliance on lanelines that are too far apart or
|
|
# will be in a few seconds
|
|
l_prob, r_prob = self.lll_prob, self.rll_prob
|
|
width_pts = self.rll_y - self.lll_y
|
|
prob_mods = []
|
|
for t_check in [0.0, 1.5, 3.0]:
|
|
width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts)
|
|
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
|
|
mod = min(prob_mods)
|
|
l_prob *= mod
|
|
r_prob *= mod
|
|
|
|
# Reduce reliance on uncertain lanelines
|
|
l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0])
|
|
r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0])
|
|
l_prob *= l_std_mod
|
|
r_prob *= r_std_mod
|
|
|
|
# Find current lanewidth
|
|
self.lane_width_certainty += 0.05 * (l_prob * r_prob - self.lane_width_certainty)
|
|
current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
|
|
self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate)
|
|
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
|
|
self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \
|
|
(1 - self.lane_width_certainty) * speed_lane_width
|
|
|
|
clipped_lane_width = min(4.0, self.lane_width)
|
|
path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
|
|
path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
|
|
|
|
self.d_prob = l_prob + r_prob - l_prob * r_prob
|
|
lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
|
|
lane_path_y_interp = np.interp(path_t, self.ll_t, lane_path_y)
|
|
path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
|
|
return path_xyz
|
|
|