openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

122 lines
3.7 KiB

#include "selfdrive/locationd/models/live_kf.h"
using namespace EKFS;
using namespace Eigen;
Eigen::Map<Eigen::VectorXd> get_mapvec(const Eigen::VectorXd &vec) {
return Eigen::Map<Eigen::VectorXd>((double*)vec.data(), vec.rows(), vec.cols());
}
Eigen::Map<MatrixXdr> get_mapmat(const MatrixXdr &mat) {
return Eigen::Map<MatrixXdr>((double*)mat.data(), mat.rows(), mat.cols());
}
std::vector<Eigen::Map<Eigen::VectorXd>> get_vec_mapvec(const std::vector<Eigen::VectorXd> &vec_vec) {
std::vector<Eigen::Map<Eigen::VectorXd>> res;
for (const Eigen::VectorXd &vec : vec_vec) {
res.push_back(get_mapvec(vec));
}
return res;
}
std::vector<Eigen::Map<MatrixXdr>> get_vec_mapmat(const std::vector<MatrixXdr> &mat_vec) {
std::vector<Eigen::Map<MatrixXdr>> res;
for (const MatrixXdr &mat : mat_vec) {
res.push_back(get_mapmat(mat));
}
return res;
}
LiveKalman::LiveKalman() {
this->dim_state = live_initial_x.rows();
this->dim_state_err = live_initial_P_diag.rows();
this->initial_x = live_initial_x;
this->initial_P = live_initial_P_diag.asDiagonal();
this->fake_gps_pos_cov = live_fake_gps_pos_cov_diag.asDiagonal();
this->fake_gps_vel_cov = live_fake_gps_vel_cov_diag.asDiagonal();
this->reset_orientation_P = live_reset_orientation_diag.asDiagonal();
this->Q = live_Q_diag.asDiagonal();
for (auto& pair : live_obs_noise_diag) {
this->obs_noise[pair.first] = pair.second.asDiagonal();
}
// init filter
this->filter = std::make_shared<EKFSym>(this->name, get_mapmat(this->Q), get_mapvec(this->initial_x),
get_mapmat(initial_P), this->dim_state, this->dim_state_err, 0, 0, 0, std::vector<int>(),
std::vector<int>{3}, std::vector<std::string>(), 0.8);
}
void LiveKalman::init_state(const VectorXd &state, const VectorXd &covs_diag, double filter_time) {
MatrixXdr covs = covs_diag.asDiagonal();
this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time);
}
void LiveKalman::init_state(const VectorXd &state, const MatrixXdr &covs, double filter_time) {
this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time);
}
void LiveKalman::init_state(const VectorXd &state, double filter_time) {
MatrixXdr covs = this->filter->covs();
this->filter->init_state(get_mapvec(state), get_mapmat(covs), filter_time);
}
VectorXd LiveKalman::get_x() {
return this->filter->state();
}
MatrixXdr LiveKalman::get_P() {
return this->filter->covs();
}
double LiveKalman::get_filter_time() {
return this->filter->get_filter_time();
}
std::vector<MatrixXdr> LiveKalman::get_R(int kind, int n) {
std::vector<MatrixXdr> R;
for (int i = 0; i < n; i++) {
R.push_back(this->obs_noise[kind]);
}
return R;
}
std::optional<Estimate> LiveKalman::predict_and_observe(double t, int kind, const std::vector<VectorXd> &meas, std::vector<MatrixXdr> R) {
std::optional<Estimate> r;
if (R.size() == 0) {
R = this->get_R(kind, meas.size());
}
r = this->filter->predict_and_update_batch(t, kind, get_vec_mapvec(meas), get_vec_mapmat(R));
return r;
}
void LiveKalman::predict(double t) {
this->filter->predict(t);
}
const Eigen::VectorXd &LiveKalman::get_initial_x() {
return this->initial_x;
}
const MatrixXdr &LiveKalman::get_initial_P() {
return this->initial_P;
}
const MatrixXdr &LiveKalman::get_fake_gps_pos_cov() {
return this->fake_gps_pos_cov;
}
const MatrixXdr &LiveKalman::get_fake_gps_vel_cov() {
return this->fake_gps_vel_cov;
}
const MatrixXdr &LiveKalman::get_reset_orientation_P() {
return this->reset_orientation_P;
}
MatrixXdr LiveKalman::H(const VectorXd &in) {
assert(in.size() == 6);
Matrix<double, 3, 6, Eigen::RowMajor> res;
this->filter->get_extra_routine("H")((double*)in.data(), res.data());
return res;
}