openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

133 lines
4.9 KiB

#include <cstring>
#include "common/mat.h"
#include "common/modeldata.h"
#include "common/params.h"
#include "common/timing.h"
#include "system/hardware/hw.h"
#include "selfdrive/modeld/models/dmonitoring.h"
constexpr int MODEL_WIDTH = 1440;
constexpr int MODEL_HEIGHT = 960;
template <class T>
static inline T *get_buffer(std::vector<T> &buf, const size_t size) {
if (buf.size() < size) buf.resize(size);
return buf.data();
}
void dmonitoring_init(DMonitoringModelState* s) {
#ifdef USE_ONNX_MODEL
s->m = new ONNXModel("models/dmonitoring_model.onnx", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME, true);
#else
s->m = new SNPEModel("models/dmonitoring_model_q.dlc", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME, true);
#endif
s->m->addInput("input_imgs", NULL, 0);
s->m->addInput("calib", s->calib, CALIB_LEN);
}
void parse_driver_data(DriverStateResult &ds_res, const DMonitoringModelState* s, int out_idx_offset) {
for (int i = 0; i < 3; ++i) {
ds_res.face_orientation[i] = s->output[out_idx_offset+i] * REG_SCALE;
ds_res.face_orientation_std[i] = exp(s->output[out_idx_offset+6+i]);
}
for (int i = 0; i < 2; ++i) {
ds_res.face_position[i] = s->output[out_idx_offset+3+i] * REG_SCALE;
ds_res.face_position_std[i] = exp(s->output[out_idx_offset+9+i]);
}
for (int i = 0; i < 4; ++i) {
ds_res.ready_prob[i] = sigmoid(s->output[out_idx_offset+35+i]);
}
for (int i = 0; i < 2; ++i) {
ds_res.not_ready_prob[i] = sigmoid(s->output[out_idx_offset+39+i]);
}
ds_res.face_prob = sigmoid(s->output[out_idx_offset+12]);
ds_res.left_eye_prob = sigmoid(s->output[out_idx_offset+21]);
ds_res.right_eye_prob = sigmoid(s->output[out_idx_offset+30]);
ds_res.left_blink_prob = sigmoid(s->output[out_idx_offset+31]);
ds_res.right_blink_prob = sigmoid(s->output[out_idx_offset+32]);
ds_res.sunglasses_prob = sigmoid(s->output[out_idx_offset+33]);
ds_res.occluded_prob = sigmoid(s->output[out_idx_offset+34]);
}
void fill_driver_data(cereal::DriverStateV2::DriverData::Builder ddata, const DriverStateResult &ds_res) {
ddata.setFaceOrientation(ds_res.face_orientation);
ddata.setFaceOrientationStd(ds_res.face_orientation_std);
ddata.setFacePosition(ds_res.face_position);
ddata.setFacePositionStd(ds_res.face_position_std);
ddata.setFaceProb(ds_res.face_prob);
ddata.setLeftEyeProb(ds_res.left_eye_prob);
ddata.setRightEyeProb(ds_res.right_eye_prob);
ddata.setLeftBlinkProb(ds_res.left_blink_prob);
ddata.setRightBlinkProb(ds_res.right_blink_prob);
ddata.setSunglassesProb(ds_res.sunglasses_prob);
ddata.setOccludedProb(ds_res.occluded_prob);
ddata.setReadyProb(ds_res.ready_prob);
ddata.setNotReadyProb(ds_res.not_ready_prob);
}
DMonitoringModelResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height, int stride, int uv_offset, float *calib) {
int v_off = height - MODEL_HEIGHT;
int h_off = (width - MODEL_WIDTH) / 2;
int yuv_buf_len = MODEL_WIDTH * MODEL_HEIGHT;
uint8_t *raw_buf = (uint8_t *) stream_buf;
// vertical crop free
uint8_t *raw_y_start = raw_buf + stride * v_off;
uint8_t *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len);
// here makes a uint8 copy
for (int r = 0; r < MODEL_HEIGHT; ++r) {
memcpy(net_input_buf + r * MODEL_WIDTH, raw_y_start + r * stride + h_off, MODEL_WIDTH);
}
// printf("preprocess completed. %d \n", yuv_buf_len);
// FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb");
// fwrite(net_input_buf, yuv_buf_len, sizeof(uint8_t), dump_yuv_file);
// fclose(dump_yuv_file);
double t1 = millis_since_boot();
s->m->setInputBuffer("input_imgs", (float*)net_input_buf, yuv_buf_len / sizeof(float));
for (int i = 0; i < CALIB_LEN; i++) {
s->calib[i] = calib[i];
}
s->m->execute();
double t2 = millis_since_boot();
DMonitoringModelResult model_res = {0};
parse_driver_data(model_res.driver_state_lhd, s, 0);
parse_driver_data(model_res.driver_state_rhd, s, 41);
model_res.poor_vision_prob = sigmoid(s->output[82]);
model_res.wheel_on_right_prob = sigmoid(s->output[83]);
model_res.dsp_execution_time = (t2 - t1) / 1000.;
return model_res;
}
void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringModelResult &model_res, float execution_time, kj::ArrayPtr<const float> raw_pred) {
// make msg
MessageBuilder msg;
auto framed = msg.initEvent().initDriverStateV2();
framed.setFrameId(frame_id);
framed.setModelExecutionTime(execution_time);
framed.setDspExecutionTime(model_res.dsp_execution_time);
framed.setPoorVisionProb(model_res.poor_vision_prob);
framed.setWheelOnRightProb(model_res.wheel_on_right_prob);
fill_driver_data(framed.initLeftDriverData(), model_res.driver_state_lhd);
fill_driver_data(framed.initRightDriverData(), model_res.driver_state_rhd);
if (send_raw_pred) {
framed.setRawPredictions(raw_pred.asBytes());
}
pm.send("driverStateV2", msg);
}
void dmonitoring_free(DMonitoringModelState* s) {
delete s->m;
}