openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

446 lines
17 KiB

#!/usr/bin/env python
import zmq
import math
import numpy as np
from collections import defaultdict
from common.params import Params
from common.realtime import sec_since_boot
from common.numpy_fast import interp
import selfdrive.messaging as messaging
from selfdrive.swaglog import cloudlog
from selfdrive.config import Conversions as CV
from selfdrive.services import service_list
from selfdrive.controls.lib.drive_helpers import create_event, MPC_COST_LONG, EventTypes as ET
from selfdrive.controls.lib.longitudinal_mpc import libmpc_py
from selfdrive.controls.lib.speed_smoother import speed_smoother
from selfdrive.controls.lib.longcontrol import LongCtrlState, MIN_CAN_SPEED
from selfdrive.controls.lib.radar_helpers import _LEAD_ACCEL_TAU
NO_CURVATURE_SPEED = 200. * CV.MPH_TO_MS
_DT_MPC = 0.2 # 5Hz
MAX_SPEED_ERROR = 2.0
AWARENESS_DECEL = -0.2 # car smoothly decel at .2m/s^2 when user is distracted
# lookup tables VS speed to determine min and max accels in cruise
# make sure these accelerations are smaller than mpc limits
_A_CRUISE_MIN_V = [-1.0, -.8, -.67, -.5, -.30]
_A_CRUISE_MIN_BP = [ 0., 5., 10., 20., 40.]
# need fast accel at very low speed for stop and go
# make sure these accelerations are smaller than mpc limits
_A_CRUISE_MAX_V = [1.1, 1.1, .8, .5, .3]
_A_CRUISE_MAX_V_FOLLOWING = [1.6, 1.6, 1.2, .7, .3]
_A_CRUISE_MAX_BP = [0., 5., 10., 20., 40.]
# Lookup table for turns
_A_TOTAL_MAX_V = [1.5, 1.9, 3.2]
_A_TOTAL_MAX_BP = [0., 20., 40.]
_FCW_A_ACT_V = [-3., -2.]
_FCW_A_ACT_BP = [0., 30.]
def calc_cruise_accel_limits(v_ego, following):
a_cruise_min = interp(v_ego, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
if following:
a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V_FOLLOWING)
else:
a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V)
return np.vstack([a_cruise_min, a_cruise_max])
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
"""
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
this should avoid accelerating when losing the target in turns
"""
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego**2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
a_x_allowed = math.sqrt(max(a_total_max**2 - a_y**2, 0.))
a_target[1] = min(a_target[1], a_x_allowed)
return a_target
class FCWChecker(object):
def __init__(self):
self.reset_lead(0.0)
def reset_lead(self, cur_time):
self.last_fcw_a = 0.0
self.v_lead_max = 0.0
self.lead_seen_t = cur_time
self.last_fcw_time = 0.0
self.last_min_a = 0.0
self.counters = defaultdict(lambda: 0)
@staticmethod
def calc_ttc(v_ego, a_ego, x_lead, v_lead, a_lead):
max_ttc = 5.0
v_rel = v_ego - v_lead
a_rel = a_ego - a_lead
# assuming that closing gap ARel comes from lead vehicle decel,
# then limit ARel so that v_lead will get to zero in no sooner than t_decel.
# This helps underweighting ARel when v_lead is close to zero.
t_decel = 2.
a_rel = np.minimum(a_rel, v_lead / t_decel)
# delta of the quadratic equation to solve for ttc
delta = v_rel**2 + 2 * x_lead * a_rel
# assign an arbitrary high ttc value if there is no solution to ttc
if delta < 0.1 or (np.sqrt(delta) + v_rel < 0.1):
ttc = max_ttc
else:
ttc = np.minimum(2 * x_lead / (np.sqrt(delta) + v_rel), max_ttc)
return ttc
def update(self, mpc_solution, cur_time, v_ego, a_ego, x_lead, v_lead, a_lead, y_lead, vlat_lead, fcw_lead, blinkers):
mpc_solution_a = list(mpc_solution[0].a_ego)
self.last_min_a = min(mpc_solution_a)
self.v_lead_max = max(self.v_lead_max, v_lead)
if (fcw_lead > 0.99):
ttc = self.calc_ttc(v_ego, a_ego, x_lead, v_lead, a_lead)
self.counters['v_ego'] = self.counters['v_ego'] + 1 if v_ego > 5.0 else 0
self.counters['ttc'] = self.counters['ttc'] + 1 if ttc < 2.5 else 0
self.counters['v_lead_max'] = self.counters['v_lead_max'] + 1 if self.v_lead_max > 2.5 else 0
self.counters['v_ego_lead'] = self.counters['v_ego_lead'] + 1 if v_ego > v_lead else 0
self.counters['lead_seen'] = self.counters['lead_seen'] + 0.33
self.counters['y_lead'] = self.counters['y_lead'] + 1 if abs(y_lead) < 1.0 else 0
self.counters['vlat_lead'] = self.counters['vlat_lead'] + 1 if abs(vlat_lead) < 0.4 else 0
self.counters['blinkers'] = self.counters['blinkers'] + 10.0 / (20 * 3.0) if not blinkers else 0
a_thr = interp(v_lead, _FCW_A_ACT_BP, _FCW_A_ACT_V)
a_delta = min(mpc_solution_a[:15]) - min(0.0, a_ego)
fcw_allowed = all(c >= 10 for c in self.counters.values())
if (self.last_min_a < -3.0 or a_delta < a_thr) and fcw_allowed and self.last_fcw_time + 5.0 < cur_time:
self.last_fcw_time = cur_time
self.last_fcw_a = self.last_min_a
return True
return False
class LongitudinalMpc(object):
def __init__(self, mpc_id, live_longitudinal_mpc):
self.live_longitudinal_mpc = live_longitudinal_mpc
self.mpc_id = mpc_id
self.setup_mpc()
self.v_mpc = 0.0
self.v_mpc_future = 0.0
self.a_mpc = 0.0
self.v_cruise = 0.0
self.prev_lead_status = False
self.prev_lead_x = 0.0
self.new_lead = False
self.last_cloudlog_t = 0.0
def send_mpc_solution(self, qp_iterations, calculation_time):
qp_iterations = max(0, qp_iterations)
dat = messaging.new_message()
dat.init('liveLongitudinalMpc')
dat.liveLongitudinalMpc.xEgo = list(self.mpc_solution[0].x_ego)
dat.liveLongitudinalMpc.vEgo = list(self.mpc_solution[0].v_ego)
dat.liveLongitudinalMpc.aEgo = list(self.mpc_solution[0].a_ego)
dat.liveLongitudinalMpc.xLead = list(self.mpc_solution[0].x_l)
dat.liveLongitudinalMpc.vLead = list(self.mpc_solution[0].v_l)
dat.liveLongitudinalMpc.cost = self.mpc_solution[0].cost
dat.liveLongitudinalMpc.aLeadTau = self.a_lead_tau
dat.liveLongitudinalMpc.qpIterations = qp_iterations
dat.liveLongitudinalMpc.mpcId = self.mpc_id
dat.liveLongitudinalMpc.calculationTime = calculation_time
self.live_longitudinal_mpc.send(dat.to_bytes())
def setup_mpc(self):
ffi, self.libmpc = libmpc_py.get_libmpc(self.mpc_id)
self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE,
MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
self.mpc_solution = ffi.new("log_t *")
self.cur_state = ffi.new("state_t *")
self.cur_state[0].v_ego = 0
self.cur_state[0].a_ego = 0
self.a_lead_tau = _LEAD_ACCEL_TAU
def set_cur_state(self, v, a):
self.cur_state[0].v_ego = v
self.cur_state[0].a_ego = a
def update(self, CS, lead, v_cruise_setpoint):
v_ego = CS.carState.vEgo
# Setup current mpc state
self.cur_state[0].x_ego = 0.0
if lead is not None and lead.status:
x_lead = lead.dRel
v_lead = max(0.0, lead.vLead)
a_lead = lead.aLeadK
if (v_lead < 0.1 or -a_lead / 2.0 > v_lead):
v_lead = 0.0
a_lead = 0.0
self.a_lead_tau = max(lead.aLeadTau, (a_lead**2 * math.pi) / (2 * (v_lead + 0.01)**2))
self.new_lead = False
if not self.prev_lead_status or abs(x_lead - self.prev_lead_x) > 2.5:
self.libmpc.init_with_simulation(self.v_mpc, x_lead, v_lead, a_lead, self.a_lead_tau)
self.new_lead = True
self.prev_lead_status = True
self.prev_lead_x = x_lead
self.cur_state[0].x_l = x_lead
self.cur_state[0].v_l = v_lead
else:
self.prev_lead_status = False
# Fake a fast lead car, so mpc keeps running
self.cur_state[0].x_l = 50.0
self.cur_state[0].v_l = v_ego + 10.0
a_lead = 0.0
self.a_lead_tau = _LEAD_ACCEL_TAU
# Calculate mpc
t = sec_since_boot()
n_its = self.libmpc.run_mpc(self.cur_state, self.mpc_solution, self.a_lead_tau, a_lead)
duration = int((sec_since_boot() - t) * 1e9)
self.send_mpc_solution(n_its, duration)
# Get solution. MPC timestep is 0.2 s, so interpolation to 0.05 s is needed
self.v_mpc = self.mpc_solution[0].v_ego[1]
self.a_mpc = self.mpc_solution[0].a_ego[1]
self.v_mpc_future = self.mpc_solution[0].v_ego[10]
# Reset if NaN or goes through lead car
dls = np.array(list(self.mpc_solution[0].x_l)) - np.array(list(self.mpc_solution[0].x_ego))
crashing = min(dls) < -50.0
nans = np.any(np.isnan(list(self.mpc_solution[0].v_ego)))
backwards = min(list(self.mpc_solution[0].v_ego)) < -0.01
if ((backwards or crashing) and self.prev_lead_status) or nans:
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Longitudinal mpc %d reset - backwards: %s crashing: %s nan: %s" % (
self.mpc_id, backwards, crashing, nans))
self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE,
MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
self.cur_state[0].v_ego = v_ego
self.cur_state[0].a_ego = 0.0
self.v_mpc = v_ego
self.a_mpc = CS.carState.aEgo
self.prev_lead_status = False
class Planner(object):
def __init__(self, CP, fcw_enabled):
context = zmq.Context()
self.CP = CP
self.poller = zmq.Poller()
self.plan = messaging.pub_sock(context, service_list['plan'].port)
self.live_longitudinal_mpc = messaging.pub_sock(context, service_list['liveLongitudinalMpc'].port)
self.radar_errors = []
self.mpc1 = LongitudinalMpc(1, self.live_longitudinal_mpc)
self.mpc2 = LongitudinalMpc(2, self.live_longitudinal_mpc)
self.v_acc_start = 0.0
self.a_acc_start = 0.0
self.v_acc = 0.0
self.v_acc_future = 0.0
self.a_acc = 0.0
self.v_cruise = 0.0
self.a_cruise = 0.0
self.lead_1 = None
self.lead_2 = None
self.longitudinalPlanSource = 'cruise'
self.fcw = False
self.fcw_checker = FCWChecker()
self.fcw_enabled = fcw_enabled
self.params = Params()
self.v_curvature = NO_CURVATURE_SPEED
self.v_speedlimit = NO_CURVATURE_SPEED
self.decel_for_turn = False
self.map_valid = False
def choose_solution(self, v_cruise_setpoint, enabled):
if enabled:
solutions = {'cruise': self.v_cruise}
if self.mpc1.prev_lead_status:
solutions['mpc1'] = self.mpc1.v_mpc
if self.mpc2.prev_lead_status:
solutions['mpc2'] = self.mpc2.v_mpc
slowest = min(solutions, key=solutions.get)
self.longitudinalPlanSource = slowest
# Choose lowest of MPC and cruise
if slowest == 'mpc1':
self.v_acc = self.mpc1.v_mpc
self.a_acc = self.mpc1.a_mpc
elif slowest == 'mpc2':
self.v_acc = self.mpc2.v_mpc
self.a_acc = self.mpc2.a_mpc
elif slowest == 'cruise':
self.v_acc = self.v_cruise
self.a_acc = self.a_cruise
self.v_acc_future = min([self.mpc1.v_mpc_future, self.mpc2.v_mpc_future, v_cruise_setpoint])
def update(self, CS, CP, VM, PP, live20, live100, md, live_map_data):
"""Gets called when new live20 is available"""
cur_time = live20.logMonoTime / 1e9
v_ego = CS.carState.vEgo
long_control_state = live100.live100.longControlState
v_cruise_kph = live100.live100.vCruise
force_slow_decel = live100.live100.forceDecel
v_cruise_setpoint = v_cruise_kph * CV.KPH_TO_MS
self.last_md_ts = md.logMonoTime
self.radar_errors = list(live20.live20.radarErrors)
self.lead_1 = live20.live20.leadOne
self.lead_2 = live20.live20.leadTwo
enabled = (long_control_state == LongCtrlState.pid) or (long_control_state == LongCtrlState.stopping)
following = self.lead_1.status and self.lead_1.dRel < 45.0 and self.lead_1.vLeadK > v_ego and self.lead_1.aLeadK > 0.0
self.v_speedlimit = NO_CURVATURE_SPEED
self.v_curvature = NO_CURVATURE_SPEED
self.map_valid = live_map_data.liveMapData.mapValid
# Speed limit and curvature
set_speed_limit_active = self.params.get("LimitSetSpeed") == "1" and self.params.get("SpeedLimitOffset") is not None
if set_speed_limit_active:
if live_map_data.liveMapData.speedLimitValid:
speed_limit = live_map_data.liveMapData.speedLimit
offset = float(self.params.get("SpeedLimitOffset"))
self.v_speedlimit = speed_limit + offset
if live_map_data.liveMapData.curvatureValid:
curvature = abs(live_map_data.liveMapData.curvature)
a_y_max = 2.975 - v_ego * 0.0375 # ~1.85 @ 75mph, ~2.6 @ 25mph
v_curvature = math.sqrt(a_y_max / max(1e-4, curvature))
self.v_curvature = min(NO_CURVATURE_SPEED, v_curvature)
self.decel_for_turn = bool(self.v_curvature < min([v_cruise_setpoint, self.v_speedlimit, v_ego + 1.]))
v_cruise_setpoint = min([v_cruise_setpoint, self.v_curvature, self.v_speedlimit])
# Calculate speed for normal cruise control
if enabled:
accel_limits = map(float, calc_cruise_accel_limits(v_ego, following))
jerk_limits = [min(-0.1, accel_limits[0]), max(0.1, accel_limits[1])] # TODO: make a separate lookup for jerk tuning
accel_limits = limit_accel_in_turns(v_ego, CS.carState.steeringAngle, accel_limits, self.CP)
if force_slow_decel:
# if required so, force a smooth deceleration
accel_limits[1] = min(accel_limits[1], AWARENESS_DECEL)
accel_limits[0] = min(accel_limits[0], accel_limits[1])
# Change accel limits based on time remaining to turn
if self.decel_for_turn:
time_to_turn = max(1.0, live_map_data.liveMapData.distToTurn / max(self.v_cruise, 1.))
required_decel = min(0, (self.v_curvature - self.v_cruise) / time_to_turn)
accel_limits[0] = max(accel_limits[0], required_decel)
self.v_cruise, self.a_cruise = speed_smoother(self.v_acc_start, self.a_acc_start,
v_cruise_setpoint,
accel_limits[1], accel_limits[0],
jerk_limits[1], jerk_limits[0],
_DT_MPC)
# cruise speed can't be negative even is user is distracted
self.v_cruise = max(self.v_cruise, 0.)
else:
starting = long_control_state == LongCtrlState.starting
a_ego = min(CS.carState.aEgo, 0.0)
reset_speed = MIN_CAN_SPEED if starting else v_ego
reset_accel = self.CP.startAccel if starting else a_ego
self.v_acc = reset_speed
self.a_acc = reset_accel
self.v_acc_start = reset_speed
self.a_acc_start = reset_accel
self.v_cruise = reset_speed
self.a_cruise = reset_accel
self.mpc1.set_cur_state(self.v_acc_start, self.a_acc_start)
self.mpc2.set_cur_state(self.v_acc_start, self.a_acc_start)
self.mpc1.update(CS, self.lead_1, v_cruise_setpoint)
self.mpc2.update(CS, self.lead_2, v_cruise_setpoint)
self.choose_solution(v_cruise_setpoint, enabled)
# determine fcw
if self.mpc1.new_lead:
self.fcw_checker.reset_lead(cur_time)
blinkers = CS.carState.leftBlinker or CS.carState.rightBlinker
self.fcw = self.fcw_checker.update(self.mpc1.mpc_solution, cur_time, v_ego, CS.carState.aEgo,
self.lead_1.dRel, self.lead_1.vLead, self.lead_1.aLeadK,
self.lead_1.yRel, self.lead_1.vLat,
self.lead_1.fcw, blinkers) and not CS.carState.brakePressed
if self.fcw:
cloudlog.info("FCW triggered %s", self.fcw_checker.counters)
model_dead = cur_time - (md.logMonoTime / 1e9) > 0.5
# **** send the plan ****
plan_send = messaging.new_message()
plan_send.init('plan')
# TODO: Move all these events to controlsd. This has nothing to do with planning
events = []
if model_dead:
events.append(create_event('modelCommIssue', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
if 'fault' in self.radar_errors:
events.append(create_event('radarFault', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
plan_send.plan.events = events
plan_send.plan.mdMonoTime = md.logMonoTime
plan_send.plan.l20MonoTime = live20.logMonoTime
# longitudal plan
plan_send.plan.vCruise = self.v_cruise
plan_send.plan.aCruise = self.a_cruise
plan_send.plan.vStart = self.v_acc_start
plan_send.plan.aStart = self.a_acc_start
plan_send.plan.vTarget = self.v_acc
plan_send.plan.aTarget = self.a_acc
plan_send.plan.vTargetFuture = self.v_acc_future
plan_send.plan.hasLead = self.mpc1.prev_lead_status
plan_send.plan.longitudinalPlanSource = self.longitudinalPlanSource
plan_send.plan.vCurvature = self.v_curvature
plan_send.plan.decelForTurn = self.decel_for_turn
plan_send.plan.mapValid = self.map_valid
# Send out fcw
fcw = self.fcw and (self.fcw_enabled or long_control_state != LongCtrlState.off)
plan_send.plan.fcw = fcw
self.plan.send(plan_send.to_bytes())
# Interpolate 0.05 seconds and save as starting point for next iteration
dt = 0.05 # s
a_acc_sol = self.a_acc_start + (dt / _DT_MPC) * (self.a_acc - self.a_acc_start)
v_acc_sol = self.v_acc_start + dt * (a_acc_sol + self.a_acc_start) / 2.0
self.v_acc_start = v_acc_sol
self.a_acc_start = a_acc_sol