You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
11 KiB
394 lines
11 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
|
|
#define EIGEN_ITERATIVE_SOLVER_BASE_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixType>
|
|
struct is_ref_compatible_impl
|
|
{
|
|
private:
|
|
template <typename T0>
|
|
struct any_conversion
|
|
{
|
|
template <typename T> any_conversion(const volatile T&);
|
|
template <typename T> any_conversion(T&);
|
|
};
|
|
struct yes {int a[1];};
|
|
struct no {int a[2];};
|
|
|
|
template<typename T>
|
|
static yes test(const Ref<const T>&, int);
|
|
template<typename T>
|
|
static no test(any_conversion<T>, ...);
|
|
|
|
public:
|
|
static MatrixType ms_from;
|
|
enum { value = sizeof(test<MatrixType>(ms_from, 0))==sizeof(yes) };
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
struct is_ref_compatible
|
|
{
|
|
enum { value = is_ref_compatible_impl<typename remove_all<MatrixType>::type>::value };
|
|
};
|
|
|
|
template<typename MatrixType, bool MatrixFree = !internal::is_ref_compatible<MatrixType>::value>
|
|
class generic_matrix_wrapper;
|
|
|
|
// We have an explicit matrix at hand, compatible with Ref<>
|
|
template<typename MatrixType>
|
|
class generic_matrix_wrapper<MatrixType,false>
|
|
{
|
|
public:
|
|
typedef Ref<const MatrixType> ActualMatrixType;
|
|
template<int UpLo> struct ConstSelfAdjointViewReturnType {
|
|
typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType<UpLo>::Type Type;
|
|
};
|
|
|
|
enum {
|
|
MatrixFree = false
|
|
};
|
|
|
|
generic_matrix_wrapper()
|
|
: m_dummy(0,0), m_matrix(m_dummy)
|
|
{}
|
|
|
|
template<typename InputType>
|
|
generic_matrix_wrapper(const InputType &mat)
|
|
: m_matrix(mat)
|
|
{}
|
|
|
|
const ActualMatrixType& matrix() const
|
|
{
|
|
return m_matrix;
|
|
}
|
|
|
|
template<typename MatrixDerived>
|
|
void grab(const EigenBase<MatrixDerived> &mat)
|
|
{
|
|
m_matrix.~Ref<const MatrixType>();
|
|
::new (&m_matrix) Ref<const MatrixType>(mat.derived());
|
|
}
|
|
|
|
void grab(const Ref<const MatrixType> &mat)
|
|
{
|
|
if(&(mat.derived()) != &m_matrix)
|
|
{
|
|
m_matrix.~Ref<const MatrixType>();
|
|
::new (&m_matrix) Ref<const MatrixType>(mat);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
MatrixType m_dummy; // used to default initialize the Ref<> object
|
|
ActualMatrixType m_matrix;
|
|
};
|
|
|
|
// MatrixType is not compatible with Ref<> -> matrix-free wrapper
|
|
template<typename MatrixType>
|
|
class generic_matrix_wrapper<MatrixType,true>
|
|
{
|
|
public:
|
|
typedef MatrixType ActualMatrixType;
|
|
template<int UpLo> struct ConstSelfAdjointViewReturnType
|
|
{
|
|
typedef ActualMatrixType Type;
|
|
};
|
|
|
|
enum {
|
|
MatrixFree = true
|
|
};
|
|
|
|
generic_matrix_wrapper()
|
|
: mp_matrix(0)
|
|
{}
|
|
|
|
generic_matrix_wrapper(const MatrixType &mat)
|
|
: mp_matrix(&mat)
|
|
{}
|
|
|
|
const ActualMatrixType& matrix() const
|
|
{
|
|
return *mp_matrix;
|
|
}
|
|
|
|
void grab(const MatrixType &mat)
|
|
{
|
|
mp_matrix = &mat;
|
|
}
|
|
|
|
protected:
|
|
const ActualMatrixType *mp_matrix;
|
|
};
|
|
|
|
}
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief Base class for linear iterative solvers
|
|
*
|
|
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
|
*/
|
|
template< typename Derived>
|
|
class IterativeSolverBase : public SparseSolverBase<Derived>
|
|
{
|
|
protected:
|
|
typedef SparseSolverBase<Derived> Base;
|
|
using Base::m_isInitialized;
|
|
|
|
public:
|
|
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
|
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
|
|
enum {
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
};
|
|
|
|
public:
|
|
|
|
using Base::derived;
|
|
|
|
/** Default constructor. */
|
|
IterativeSolverBase()
|
|
{
|
|
init();
|
|
}
|
|
|
|
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
|
*
|
|
* This constructor is a shortcut for the default constructor followed
|
|
* by a call to compute().
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template<typename MatrixDerived>
|
|
explicit IterativeSolverBase(const EigenBase<MatrixDerived>& A)
|
|
: m_matrixWrapper(A.derived())
|
|
{
|
|
init();
|
|
compute(matrix());
|
|
}
|
|
|
|
~IterativeSolverBase() {}
|
|
|
|
/** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems.
|
|
*
|
|
* Currently, this function mostly calls analyzePattern on the preconditioner. In the future
|
|
* we might, for instance, implement column reordering for faster matrix vector products.
|
|
*/
|
|
template<typename MatrixDerived>
|
|
Derived& analyzePattern(const EigenBase<MatrixDerived>& A)
|
|
{
|
|
grab(A.derived());
|
|
m_preconditioner.analyzePattern(matrix());
|
|
m_isInitialized = true;
|
|
m_analysisIsOk = true;
|
|
m_info = m_preconditioner.info();
|
|
return derived();
|
|
}
|
|
|
|
/** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
|
|
*
|
|
* Currently, this function mostly calls factorize on the preconditioner.
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template<typename MatrixDerived>
|
|
Derived& factorize(const EigenBase<MatrixDerived>& A)
|
|
{
|
|
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
|
grab(A.derived());
|
|
m_preconditioner.factorize(matrix());
|
|
m_factorizationIsOk = true;
|
|
m_info = m_preconditioner.info();
|
|
return derived();
|
|
}
|
|
|
|
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
|
|
*
|
|
* Currently, this function mostly initializes/computes the preconditioner. In the future
|
|
* we might, for instance, implement column reordering for faster matrix vector products.
|
|
*
|
|
* \warning this class stores a reference to the matrix A as well as some
|
|
* precomputed values that depend on it. Therefore, if \a A is changed
|
|
* this class becomes invalid. Call compute() to update it with the new
|
|
* matrix A, or modify a copy of A.
|
|
*/
|
|
template<typename MatrixDerived>
|
|
Derived& compute(const EigenBase<MatrixDerived>& A)
|
|
{
|
|
grab(A.derived());
|
|
m_preconditioner.compute(matrix());
|
|
m_isInitialized = true;
|
|
m_analysisIsOk = true;
|
|
m_factorizationIsOk = true;
|
|
m_info = m_preconditioner.info();
|
|
return derived();
|
|
}
|
|
|
|
/** \internal */
|
|
Index rows() const { return matrix().rows(); }
|
|
|
|
/** \internal */
|
|
Index cols() const { return matrix().cols(); }
|
|
|
|
/** \returns the tolerance threshold used by the stopping criteria.
|
|
* \sa setTolerance()
|
|
*/
|
|
RealScalar tolerance() const { return m_tolerance; }
|
|
|
|
/** Sets the tolerance threshold used by the stopping criteria.
|
|
*
|
|
* This value is used as an upper bound to the relative residual error: |Ax-b|/|b|.
|
|
* The default value is the machine precision given by NumTraits<Scalar>::epsilon()
|
|
*/
|
|
Derived& setTolerance(const RealScalar& tolerance)
|
|
{
|
|
m_tolerance = tolerance;
|
|
return derived();
|
|
}
|
|
|
|
/** \returns a read-write reference to the preconditioner for custom configuration. */
|
|
Preconditioner& preconditioner() { return m_preconditioner; }
|
|
|
|
/** \returns a read-only reference to the preconditioner. */
|
|
const Preconditioner& preconditioner() const { return m_preconditioner; }
|
|
|
|
/** \returns the max number of iterations.
|
|
* It is either the value setted by setMaxIterations or, by default,
|
|
* twice the number of columns of the matrix.
|
|
*/
|
|
Index maxIterations() const
|
|
{
|
|
return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations;
|
|
}
|
|
|
|
/** Sets the max number of iterations.
|
|
* Default is twice the number of columns of the matrix.
|
|
*/
|
|
Derived& setMaxIterations(Index maxIters)
|
|
{
|
|
m_maxIterations = maxIters;
|
|
return derived();
|
|
}
|
|
|
|
/** \returns the number of iterations performed during the last solve */
|
|
Index iterations() const
|
|
{
|
|
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
|
return m_iterations;
|
|
}
|
|
|
|
/** \returns the tolerance error reached during the last solve.
|
|
* It is a close approximation of the true relative residual error |Ax-b|/|b|.
|
|
*/
|
|
RealScalar error() const
|
|
{
|
|
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
|
|
return m_error;
|
|
}
|
|
|
|
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
|
* and \a x0 as an initial solution.
|
|
*
|
|
* \sa solve(), compute()
|
|
*/
|
|
template<typename Rhs,typename Guess>
|
|
inline const SolveWithGuess<Derived, Rhs, Guess>
|
|
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
|
{
|
|
eigen_assert(m_isInitialized && "Solver is not initialized.");
|
|
eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
|
|
return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0);
|
|
}
|
|
|
|
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
|
|
return m_info;
|
|
}
|
|
|
|
/** \internal */
|
|
template<typename Rhs, typename DestDerived>
|
|
void _solve_impl(const Rhs& b, SparseMatrixBase<DestDerived> &aDest) const
|
|
{
|
|
eigen_assert(rows()==b.rows());
|
|
|
|
Index rhsCols = b.cols();
|
|
Index size = b.rows();
|
|
DestDerived& dest(aDest.derived());
|
|
typedef typename DestDerived::Scalar DestScalar;
|
|
Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
|
|
Eigen::Matrix<DestScalar,Dynamic,1> tx(cols());
|
|
// We do not directly fill dest because sparse expressions have to be free of aliasing issue.
|
|
// For non square least-square problems, b and dest might not have the same size whereas they might alias each-other.
|
|
typename DestDerived::PlainObject tmp(cols(),rhsCols);
|
|
for(Index k=0; k<rhsCols; ++k)
|
|
{
|
|
tb = b.col(k);
|
|
tx = derived().solve(tb);
|
|
tmp.col(k) = tx.sparseView(0);
|
|
}
|
|
dest.swap(tmp);
|
|
}
|
|
|
|
protected:
|
|
void init()
|
|
{
|
|
m_isInitialized = false;
|
|
m_analysisIsOk = false;
|
|
m_factorizationIsOk = false;
|
|
m_maxIterations = -1;
|
|
m_tolerance = NumTraits<Scalar>::epsilon();
|
|
}
|
|
|
|
typedef internal::generic_matrix_wrapper<MatrixType> MatrixWrapper;
|
|
typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType;
|
|
|
|
const ActualMatrixType& matrix() const
|
|
{
|
|
return m_matrixWrapper.matrix();
|
|
}
|
|
|
|
template<typename InputType>
|
|
void grab(const InputType &A)
|
|
{
|
|
m_matrixWrapper.grab(A);
|
|
}
|
|
|
|
MatrixWrapper m_matrixWrapper;
|
|
Preconditioner m_preconditioner;
|
|
|
|
Index m_maxIterations;
|
|
RealScalar m_tolerance;
|
|
|
|
mutable RealScalar m_error;
|
|
mutable Index m_iterations;
|
|
mutable ComputationInfo m_info;
|
|
mutable bool m_analysisIsOk, m_factorizationIsOk;
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H
|
|
|