You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							177 lines
						
					
					
						
							6.6 KiB
						
					
					
				
			
		
		
	
	
							177 lines
						
					
					
						
							6.6 KiB
						
					
					
				| import numpy as np
 | |
| from collections import defaultdict
 | |
| from enum import Enum
 | |
| 
 | |
| from openpilot.tools.lib.logreader import LogReader
 | |
| from openpilot.selfdrive.test.process_replay.migration import migrate_all
 | |
| from openpilot.selfdrive.test.process_replay.process_replay import replay_process_with_name
 | |
| 
 | |
| # TODO find a new segment to test
 | |
| TEST_ROUTE = "4019fff6e54cf1c7|00000123--4bc0d95ef6/5"
 | |
| GPS_MESSAGES = ['gpsLocationExternal', 'gpsLocation']
 | |
| SELECT_COMPARE_FIELDS = {
 | |
|   'yaw_rate': ['angularVelocityDevice', 'z'],
 | |
|   'roll': ['orientationNED', 'x'],
 | |
|   'inputs_flag': ['inputsOK'],
 | |
|   'sensors_flag': ['sensorsOK'],
 | |
| }
 | |
| JUNK_IDX = 100
 | |
| CONSISTENT_SPIKES_COUNT = 10
 | |
| 
 | |
| 
 | |
| class Scenario(Enum):
 | |
|   BASE = 'base'
 | |
|   GYRO_OFF = 'gyro_off'
 | |
|   GYRO_SPIKE_MIDWAY = 'gyro_spike_midway'
 | |
|   ACCEL_OFF = 'accel_off'
 | |
|   ACCEL_SPIKE_MIDWAY = 'accel_spike_midway'
 | |
|   SENSOR_TIMING_SPIKE_MIDWAY = 'timing_spikes'
 | |
|   SENSOR_TIMING_CONSISTENT_SPIKES = 'timing_consistent_spikes'
 | |
| 
 | |
| 
 | |
| def get_select_fields_data(logs):
 | |
|   def get_nested_keys(msg, keys):
 | |
|     val = None
 | |
|     for key in keys:
 | |
|       val = getattr(msg if val is None else val, key) if isinstance(key, str) else val[key]
 | |
|     return val
 | |
|   lp = [x.livePose for x in logs if x.which() == 'livePose']
 | |
|   data = defaultdict(list)
 | |
|   for msg in lp:
 | |
|     for key, fields in SELECT_COMPARE_FIELDS.items():
 | |
|       data[key].append(get_nested_keys(msg, fields))
 | |
|   for key in data:
 | |
|     data[key] = np.array(data[key][JUNK_IDX:], dtype=float)
 | |
|   return data
 | |
| 
 | |
| 
 | |
| def modify_logs_midway(logs, which, count, fn):
 | |
|   non_which = [x for x in logs if x.which() != which]
 | |
|   which = [x for x in logs if x.which() == which]
 | |
|   temps = which[len(which) // 2:len(which) // 2 + count]
 | |
|   for i, temp in enumerate(temps):
 | |
|     temp = temp.as_builder()
 | |
|     fn(temp)
 | |
|     which[len(which) // 2 + i] = temp.as_reader()
 | |
|   return sorted(non_which + which, key=lambda x: x.logMonoTime)
 | |
| 
 | |
| 
 | |
| def run_scenarios(scenario, logs):
 | |
|   if scenario == Scenario.BASE:
 | |
|     pass
 | |
| 
 | |
|   elif scenario == Scenario.GYRO_OFF:
 | |
|     logs = sorted([x for x in logs if x.which() != 'gyroscope'], key=lambda x: x.logMonoTime)
 | |
| 
 | |
|   elif scenario == Scenario.GYRO_SPIKE_MIDWAY:
 | |
|     def gyro_spike(msg):
 | |
|       msg.gyroscope.gyroUncalibrated.v[0] += 3.0
 | |
|     logs = modify_logs_midway(logs, 'gyroscope', 1, gyro_spike)
 | |
| 
 | |
|   elif scenario == Scenario.ACCEL_OFF:
 | |
|     logs = sorted([x for x in logs if x.which() != 'accelerometer'], key=lambda x: x.logMonoTime)
 | |
| 
 | |
|   elif scenario == Scenario.ACCEL_SPIKE_MIDWAY:
 | |
|     def acc_spike(msg):
 | |
|       msg.accelerometer.acceleration.v[0] += 10.0
 | |
|     logs = modify_logs_midway(logs, 'accelerometer', 1, acc_spike)
 | |
| 
 | |
|   elif scenario == Scenario.SENSOR_TIMING_SPIKE_MIDWAY or scenario == Scenario.SENSOR_TIMING_CONSISTENT_SPIKES:
 | |
|     def timing_spike(msg):
 | |
|       msg.accelerometer.timestamp -= int(0.150 * 1e9)
 | |
|     count = 1 if scenario == Scenario.SENSOR_TIMING_SPIKE_MIDWAY else CONSISTENT_SPIKES_COUNT
 | |
|     logs = modify_logs_midway(logs, 'accelerometer', count, timing_spike)
 | |
| 
 | |
|   replayed_logs = replay_process_with_name(name='locationd', lr=logs)
 | |
|   return get_select_fields_data(logs), get_select_fields_data(replayed_logs)
 | |
| 
 | |
| 
 | |
| class TestLocationdScenarios:
 | |
|   """
 | |
|   Test locationd with different scenarios. In all these scenarios, we expect the following:
 | |
|     - locationd kalman filter should never go unstable (we care mostly about yaw_rate, roll, gpsOK, inputsOK, sensorsOK)
 | |
|     - faulty values should be ignored, with appropriate flags set
 | |
|   """
 | |
| 
 | |
|   @classmethod
 | |
|   def setup_class(cls):
 | |
|     cls.logs = migrate_all(LogReader(TEST_ROUTE))
 | |
| 
 | |
|   def test_base(self):
 | |
|     """
 | |
|     Test: unchanged log
 | |
|     Expected Result:
 | |
|       - yaw_rate: unchanged
 | |
|       - roll: unchanged
 | |
|     """
 | |
|     orig_data, replayed_data = run_scenarios(Scenario.BASE, self.logs)
 | |
|     assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
 | |
|     assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
 | |
| 
 | |
|   def test_gyro_off(self):
 | |
|     """
 | |
|     Test: no gyroscope message for the entire segment
 | |
|     Expected Result:
 | |
|       - yaw_rate: 0
 | |
|       - roll: 0
 | |
|       - sensorsOK: False
 | |
|     """
 | |
|     _, replayed_data = run_scenarios(Scenario.GYRO_OFF, self.logs)
 | |
|     assert np.allclose(replayed_data['yaw_rate'], 0.0)
 | |
|     assert np.allclose(replayed_data['roll'], 0.0)
 | |
|     assert np.all(replayed_data['sensors_flag'] == 0.0)
 | |
| 
 | |
|   def test_gyro_spikes(self):
 | |
|     """
 | |
|     Test: a gyroscope spike in the middle of the segment
 | |
|     Expected Result:
 | |
|       - yaw_rate: unchanged
 | |
|       - roll: unchanged
 | |
|       - inputsOK: False for some time after the spike, True for the rest
 | |
|     """
 | |
|     orig_data, replayed_data = run_scenarios(Scenario.GYRO_SPIKE_MIDWAY, self.logs)
 | |
|     assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
 | |
|     assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
 | |
|     assert np.diff(replayed_data['inputs_flag'])[499] == -1.0
 | |
|     assert np.diff(replayed_data['inputs_flag'])[704] == 1.0
 | |
| 
 | |
|   def test_accel_off(self):
 | |
|     """
 | |
|     Test: no accelerometer message for the entire segment
 | |
|     Expected Result:
 | |
|       - yaw_rate: 0
 | |
|       - roll: 0
 | |
|       - sensorsOK: False
 | |
|     """
 | |
|     _, replayed_data = run_scenarios(Scenario.ACCEL_OFF, self.logs)
 | |
|     assert np.allclose(replayed_data['yaw_rate'], 0.0)
 | |
|     assert np.allclose(replayed_data['roll'], 0.0)
 | |
|     assert np.all(replayed_data['sensors_flag'] == 0.0)
 | |
| 
 | |
|   def test_accel_spikes(self):
 | |
|     """
 | |
|     ToDo:
 | |
|     Test: an accelerometer spike in the middle of the segment
 | |
|     Expected Result: Right now, the kalman filter is not robust to small spikes like it is to gyroscope spikes.
 | |
|     """
 | |
|     orig_data, replayed_data = run_scenarios(Scenario.ACCEL_SPIKE_MIDWAY, self.logs)
 | |
|     assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
 | |
|     assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
 | |
| 
 | |
|   def test_single_timing_spike(self):
 | |
|     """
 | |
|     Test: timing of 150ms off for the single accelerometer message in the middle of the segment
 | |
|     Expected Result: the message is ignored, and inputsOK is False for that time
 | |
|     """
 | |
|     orig_data, replayed_data = run_scenarios(Scenario.SENSOR_TIMING_SPIKE_MIDWAY, self.logs)
 | |
|     assert np.all(replayed_data['inputs_flag'] == orig_data['inputs_flag'])
 | |
|     assert np.all(replayed_data['sensors_flag'] == orig_data['sensors_flag'])
 | |
| 
 | |
|   def test_consistent_timing_spikes(self):
 | |
|     """
 | |
|     Test: consistent timing spikes for N accelerometer messages in the middle of the segment
 | |
|     Expected Result: inputsOK becomes False after N of bad measurements
 | |
|     """
 | |
|     orig_data, replayed_data = run_scenarios(Scenario.SENSOR_TIMING_CONSISTENT_SPIKES, self.logs)
 | |
|     assert np.diff(replayed_data['inputs_flag'])[500] == -1.0
 | |
|     assert np.diff(replayed_data['inputs_flag'])[787] == 1.0
 | |
| 
 |