You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.4 KiB
150 lines
5.4 KiB
#!/usr/bin/env python3
|
|
import numpy as np
|
|
from collections import deque
|
|
|
|
import cereal.messaging as messaging
|
|
from cereal import car
|
|
from openpilot.common.params import Params
|
|
from openpilot.common.realtime import config_realtime_process, DT_CTRL
|
|
from openpilot.selfdrive.locationd.helpers import ParameterEstimator, PoseCalibrator, Pose
|
|
|
|
MIN_LAG_VEL = 15.0
|
|
MAX_SANE_LAG = 3.0
|
|
MIN_ABS_YAW_RATE_DEG = 1
|
|
MAX_LAG_HIST_LEN_SEC = 600
|
|
MOVING_CORR_WINDOW = 300
|
|
MIN_OKAY_WINDOW = 60
|
|
|
|
|
|
class BaseLagEstimator:
|
|
def __init__(self, CP, dt, moving_corr_window, min_okay_window):
|
|
self.dt = dt
|
|
self.window_len = int(moving_corr_window / self.dt)
|
|
self.min_okay_window_len = int(min_okay_window / self.dt)
|
|
self.initial_lag = CP.steerActuatorDelay
|
|
|
|
self.calibrator = PoseCalibrator()
|
|
|
|
lag_limit = int(moving_corr_window / (self.dt * 25))
|
|
self.lags = deque(maxlen=lag_limit)
|
|
self.correlations = deque(maxlen=lag_limit)
|
|
self.times = deque(maxlen=int(moving_corr_window / self.dt))
|
|
self.curvature = deque(maxlen=int(moving_corr_window / self.dt))
|
|
self.desired_curvature = deque(maxlen=int(moving_corr_window / self.dt))
|
|
self.okay = deque(maxlen=int(moving_corr_window / self.dt))
|
|
|
|
def actuator_delay(self, expected_sig, actual_sig, is_okay, dt, max_lag):
|
|
raise NotImplementedError
|
|
|
|
def handle_log(self, t, which, msg) -> None:
|
|
if which == "carControl":
|
|
self.lat_active = msg.latActive
|
|
elif which == "carState":
|
|
self.steering_pressed = msg.steeringPressed
|
|
self.v_ego = msg.vEgo
|
|
elif which == "controlsState":
|
|
curvature = msg.curvature
|
|
desired_curvature = msg.desiredCurvature
|
|
okay = self.lat_active and not self.steering_pressed and self.v_ego > MIN_LAG_VEL and abs(self.yaw_rate) > np.radians(MIN_ABS_YAW_RATE_DEG)
|
|
self.times.append(t)
|
|
self.okay.append(okay)
|
|
self.curvature.append(curvature)
|
|
self.desired_curvature.append(desired_curvature)
|
|
elif which == "livePose":
|
|
device_pose = Pose.from_live_pose(msg)
|
|
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
|
|
|
|
self.yaw_rate = calibrated_pose.angular_velocity.z
|
|
elif which == 'liveCalibration':
|
|
self.calibrator.feed_live_calib(msg)
|
|
|
|
def get_msg(self, valid: bool, with_points: bool):
|
|
okay_count = np.count_nonzero(self.okay)
|
|
if len(self.curvature) >= self.window_len and okay_count >= self.min_okay_window_len:
|
|
curvature = np.array(self.curvature)
|
|
desired_curvature = np.array(self.desired_curvature)
|
|
okay = np.array(self.okay)
|
|
try:
|
|
delay_curvature, correlation = self.actuator_delay(desired_curvature, curvature, okay, self.dt, MAX_SANE_LAG)
|
|
self.lags.append(delay_curvature)
|
|
self.correlations.append(correlation)
|
|
except ValueError:
|
|
pass
|
|
|
|
if len(self.lags) > 0:
|
|
steer_actuation_delay = np.mean(self.lags)
|
|
steer_correlation = np.mean(self.correlations)
|
|
is_estimated = True
|
|
else:
|
|
steer_actuation_delay = self.initial_lag
|
|
steer_correlation = np.nan
|
|
is_estimated = False
|
|
|
|
msg = messaging.new_message('liveActuatorDelay')
|
|
msg.valid = valid
|
|
|
|
liveActuatorDelay = msg.liveActuatorDelay
|
|
liveActuatorDelay.steerActuatorDelay = steer_actuation_delay
|
|
liveActuatorDelay.totalPoints = len(self.curvature)
|
|
liveActuatorDelay.isEstimated = is_estimated
|
|
|
|
if with_points:
|
|
liveActuatorDelay.points = [p for p in zip(self.curvature, self.desired_curvature)]
|
|
|
|
return steer_actuation_delay, steer_correlation, okay_count, is_estimated
|
|
|
|
|
|
class LagEstimator(ParameterEstimator):
|
|
def correlation_lags(self, sig_len, dt):
|
|
return np.arange(0, sig_len) * dt
|
|
|
|
def actuator_delay(self, expected_sig, actual_sig, is_okay, dt, max_lag):
|
|
from skimage.registration._masked_phase_cross_correlation import cross_correlate_masked
|
|
# masked (gated) normalized cross-correlation
|
|
# normalized, can be used for anything, like comparsion
|
|
|
|
assert len(expected_sig) == len(actual_sig)
|
|
|
|
xcorr = cross_correlate_masked(actual_sig, expected_sig, is_okay, is_okay, axes=tuple(range(actual_sig.ndim)),)
|
|
lags = self.correlation_lags(len(expected_sig), dt)
|
|
|
|
n_frames_max_delay = int(max_lag / dt)
|
|
xcorr = xcorr[len(expected_sig) - 1: len(expected_sig) - 1 + n_frames_max_delay]
|
|
lags = lags[:n_frames_max_delay]
|
|
|
|
max_corr_index = np.argmax(xcorr)
|
|
|
|
lag, corr = lags[max_corr_index], xcorr[max_corr_index]
|
|
return lag, corr
|
|
|
|
|
|
def main():
|
|
config_realtime_process([0, 1, 2, 3], 5)
|
|
|
|
pm = messaging.PubMaster(['liveActuatorDelay', 'alertDebug'])
|
|
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carControl', 'carState', 'controlsState'], poll='controlsState')
|
|
|
|
params = Params()
|
|
CP = messaging.log_from_bytes(params.get("CarParams", block=True), car.CarParams)
|
|
estimator = LagEstimator(CP, DT_CTRL, MOVING_CORR_WINDOW, MIN_OKAY_WINDOW)
|
|
|
|
while True:
|
|
sm.update()
|
|
if sm.all_checks():
|
|
for which in sm.services:
|
|
if sm.updated[which]:
|
|
t = sm.logMonoTime[which] * 1e-9
|
|
estimator.handle_log(t, which, sm[which])
|
|
|
|
if sm.frame % 25 == 0:
|
|
msg = estimator.get_msg(sm.all_checks(), with_points=True)
|
|
alert_msg = messaging.new_message('alertDebug')
|
|
alert_msg.alertDebug.alertText1 = f"Lag estimate (fixed: {CP.steerActuatorDelay:.2f} s)"
|
|
alert_msg.alertDebug.alertText2 = f"{msg.liveActuatorDelay.steerActuatorDelay:.2f} s"
|
|
|
|
pm.send('liveActuatorDelay', msg)
|
|
pm.send('alertDebug', alert_msg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|