openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

119 lines
4.2 KiB

import math
import numpy as np
from cereal import log
from common.filter_simple import FirstOrderFilter
from common.numpy_fast import clip, interp
from common.realtime import DT_CTRL
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
class LatControlINDI(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.angle_steers_des = 0.
A = np.array([[1.0, DT_CTRL, 0.0],
[0.0, 1.0, DT_CTRL],
[0.0, 0.0, 1.0]])
C = np.array([[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0]])
# Q = np.matrix([[1e-2, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 10.0]])
# R = np.matrix([[1e-2, 0.0], [0.0, 1e3]])
# (x, l, K) = control.dare(np.transpose(A), np.transpose(C), Q, R)
# K = np.transpose(K)
K = np.array([[7.30262179e-01, 2.07003658e-04],
[7.29394177e+00, 1.39159419e-02],
[1.71022442e+01, 3.38495381e-02]])
self.speed = 0.
self.K = K
self.A_K = A - np.dot(K, C)
self.x = np.array([[0.], [0.], [0.]])
self._RC = (CP.lateralTuning.indi.timeConstantBP, CP.lateralTuning.indi.timeConstantV)
self._G = (CP.lateralTuning.indi.actuatorEffectivenessBP, CP.lateralTuning.indi.actuatorEffectivenessV)
self._outer_loop_gain = (CP.lateralTuning.indi.outerLoopGainBP, CP.lateralTuning.indi.outerLoopGainV)
self._inner_loop_gain = (CP.lateralTuning.indi.innerLoopGainBP, CP.lateralTuning.indi.innerLoopGainV)
self.steer_filter = FirstOrderFilter(0., self.RC, DT_CTRL)
self.reset()
@property
def RC(self):
return interp(self.speed, self._RC[0], self._RC[1])
@property
def G(self):
return interp(self.speed, self._G[0], self._G[1])
@property
def outer_loop_gain(self):
return interp(self.speed, self._outer_loop_gain[0], self._outer_loop_gain[1])
@property
def inner_loop_gain(self):
return interp(self.speed, self._inner_loop_gain[0], self._inner_loop_gain[1])
def reset(self):
super().reset()
self.steer_filter.x = 0.
self.speed = 0.
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
self.speed = CS.vEgo
# Update Kalman filter
y = np.array([[math.radians(CS.steeringAngleDeg)], [math.radians(CS.steeringRateDeg)]])
self.x = np.dot(self.A_K, self.x) + np.dot(self.K, y)
indi_log = log.ControlsState.LateralINDIState.new_message()
indi_log.steeringAngleDeg = math.degrees(self.x[0])
indi_log.steeringRateDeg = math.degrees(self.x[1])
indi_log.steeringAccelDeg = math.degrees(self.x[2])
steers_des = VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)
steers_des += math.radians(params.angleOffsetDeg)
indi_log.steeringAngleDesiredDeg = math.degrees(steers_des)
rate_des = VM.get_steer_from_curvature(-desired_curvature_rate, CS.vEgo, 0)
indi_log.steeringRateDesiredDeg = math.degrees(rate_des)
if CS.vEgo < MIN_STEER_SPEED or not active:
indi_log.active = False
self.steer_filter.x = 0.0
output_steer = 0
else:
# Expected actuator value
self.steer_filter.update_alpha(self.RC)
self.steer_filter.update(last_actuators.steer)
# Compute acceleration error
rate_sp = self.outer_loop_gain * (steers_des - self.x[0]) + rate_des
accel_sp = self.inner_loop_gain * (rate_sp - self.x[1])
accel_error = accel_sp - self.x[2]
# Compute change in actuator
g_inv = 1. / self.G
delta_u = g_inv * accel_error
# If steering pressed, only allow wind down
if CS.steeringPressed and (delta_u * last_actuators.steer > 0):
delta_u = 0
output_steer = self.steer_filter.x + delta_u
output_steer = clip(output_steer, -self.steer_max, self.steer_max)
indi_log.active = True
indi_log.rateSetPoint = float(rate_sp)
indi_log.accelSetPoint = float(accel_sp)
indi_log.accelError = float(accel_error)
indi_log.delayedOutput = float(self.steer_filter.x)
indi_log.delta = float(delta_u)
indi_log.output = float(output_steer)
indi_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS)
return float(output_steer), float(steers_des), indi_log