openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

134 lines
5.4 KiB

#!/usr/bin/env python3
import math
import numpy as np
from common.numpy_fast import interp
import cereal.messaging as messaging
from common.conversions import Conversions as CV
from common.filter_simple import FirstOrderFilter
from common.realtime import DT_MDL
from selfdrive.modeld.constants import T_IDXS
from selfdrive.controls.lib.longcontrol import LongCtrlState
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N
from selfdrive.swaglog import cloudlog
LON_MPC_STEP = 0.2 # first step is 0.2s
AWARENESS_DECEL = -0.2 # car smoothly decel at .2m/s^2 when user is distracted
A_CRUISE_MIN = -1.2
A_CRUISE_MAX_VALS = [1.2, 1.2, 0.8, 0.6]
A_CRUISE_MAX_BP = [0., 15., 25., 40.]
# Lookup table for turns
_A_TOTAL_MAX_V = [1.7, 3.2]
_A_TOTAL_MAX_BP = [20., 40.]
def get_max_accel(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
"""
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
this should avoid accelerating when losing the target in turns
"""
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
# The lookup table for turns should also be updated if we do this
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
return [a_target[0], min(a_target[1], a_x_allowed)]
class Planner:
def __init__(self, CP, init_v=0.0, init_a=0.0):
self.CP = CP
self.mpc = LongitudinalMpc()
self.fcw = False
self.a_desired = init_a
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, DT_MDL)
self.v_desired_trajectory = np.zeros(CONTROL_N)
self.a_desired_trajectory = np.zeros(CONTROL_N)
self.j_desired_trajectory = np.zeros(CONTROL_N)
self.solverExecutionTime = 0.0
def update(self, sm):
v_ego = sm['carState'].vEgo
v_cruise_kph = sm['controlsState'].vCruise
v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX)
v_cruise = v_cruise_kph * CV.KPH_TO_MS
long_control_state = sm['controlsState'].longControlState
force_slow_decel = sm['controlsState'].forceDecel
# Reset current state when not engaged, or user is controlling the speed
reset_state = long_control_state == LongCtrlState.off
reset_state = reset_state or sm['carState'].gasPressed
# No change cost when user is controlling the speed, or when standstill
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
if reset_state:
self.v_desired_filter.x = v_ego
self.a_desired = 0.0
# Prevent divergence, smooth in current v_ego
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
if force_slow_decel:
# if required so, force a smooth deceleration
accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL)
accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1])
# clip limits, cannot init MPC outside of bounds
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
self.mpc.set_weights(prev_accel_constraint)
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
self.mpc.update(sm['carState'], sm['radarState'], v_cruise)
self.v_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.a_solution)
self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
# TODO counter is only needed because radar is glitchy, remove once radar is gone
self.fcw = self.mpc.crash_cnt > 5
if self.fcw:
cloudlog.info("FCW triggered")
# Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired
self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0
def publish(self, sm, pm):
plan_send = messaging.new_message('longitudinalPlan')
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState'])
longitudinalPlan = plan_send.longitudinalPlan
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
longitudinalPlan.longitudinalPlanSource = self.mpc.source
longitudinalPlan.fcw = self.fcw
longitudinalPlan.solverExecutionTime = self.mpc.solve_time
pm.send('longitudinalPlan', plan_send)