You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
4.5 KiB
173 lines
4.5 KiB
#include "acado_common.h"
|
|
#include "acado_auxiliary_functions.h"
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#define NX ACADO_NX /* Number of differential state variables. */
|
|
#define NXA ACADO_NXA /* Number of algebraic variables. */
|
|
#define NU ACADO_NU /* Number of control inputs. */
|
|
#define NOD ACADO_NOD /* Number of online data values. */
|
|
|
|
#define NY ACADO_NY /* Number of measurements/references on nodes 0..N - 1. */
|
|
#define NYN ACADO_NYN /* Number of measurements/references on node N. */
|
|
|
|
#define N ACADO_N /* Number of intervals in the horizon. */
|
|
|
|
ACADOvariables acadoVariables;
|
|
ACADOworkspace acadoWorkspace;
|
|
|
|
typedef struct {
|
|
double x_ego, v_ego, a_ego, x_l, v_l, a_l;
|
|
} state_t;
|
|
|
|
|
|
typedef struct {
|
|
double x_ego[N+1];
|
|
double v_ego[N+1];
|
|
double a_ego[N+1];
|
|
double j_ego[N];
|
|
double x_l[N+1];
|
|
double v_l[N+1];
|
|
double a_l[N+1];
|
|
double t[N+1];
|
|
double cost;
|
|
} log_t;
|
|
|
|
void init(double ttcCost, double distanceCost, double accelerationCost, double jerkCost){
|
|
acado_initializeSolver();
|
|
int i;
|
|
const int STEP_MULTIPLIER = 3;
|
|
|
|
/* Initialize the states and controls. */
|
|
for (i = 0; i < NX * (N + 1); ++i) acadoVariables.x[ i ] = 0.0;
|
|
for (i = 0; i < NU * N; ++i) acadoVariables.u[ i ] = 0.0;
|
|
|
|
/* Initialize the measurements/reference. */
|
|
for (i = 0; i < NY * N; ++i) acadoVariables.y[ i ] = 0.0;
|
|
for (i = 0; i < NYN; ++i) acadoVariables.yN[ i ] = 0.0;
|
|
|
|
/* MPC: initialize the current state feedback. */
|
|
for (i = 0; i < NX; ++i) acadoVariables.x0[ i ] = 0.0;
|
|
// Set weights
|
|
|
|
for (i = 0; i < N; i++) {
|
|
int f = 1;
|
|
if (i > 4){
|
|
f = STEP_MULTIPLIER;
|
|
}
|
|
// Setup diagonal entries
|
|
acadoVariables.W[NY*NY*i + (NY+1)*0] = ttcCost * f; // exponential cost for time-to-collision (ttc)
|
|
acadoVariables.W[NY*NY*i + (NY+1)*1] = distanceCost * f; // desired distance
|
|
acadoVariables.W[NY*NY*i + (NY+1)*2] = accelerationCost * f; // acceleration
|
|
acadoVariables.W[NY*NY*i + (NY+1)*3] = jerkCost * f; // jerk
|
|
}
|
|
acadoVariables.WN[(NYN+1)*0] = ttcCost * STEP_MULTIPLIER; // exponential cost for danger zone
|
|
acadoVariables.WN[(NYN+1)*1] = distanceCost * STEP_MULTIPLIER; // desired distance
|
|
acadoVariables.WN[(NYN+1)*2] = accelerationCost * STEP_MULTIPLIER; // acceleration
|
|
|
|
}
|
|
|
|
void init_with_simulation(double v_ego, double x_l_0, double v_l_0, double a_l_0, double l){
|
|
int i;
|
|
|
|
double x_l = x_l_0;
|
|
double v_l = v_l_0;
|
|
double a_l = a_l_0;
|
|
|
|
double x_ego = 0.0;
|
|
double a_ego = -(v_ego - v_l) * (v_ego - v_l) / (2.0 * x_l + 0.01) + a_l;
|
|
|
|
if (a_ego > 0){
|
|
a_ego = 0.0;
|
|
}
|
|
|
|
|
|
double dt = 0.2;
|
|
double t = 0.;
|
|
|
|
for (i = 0; i < N + 1; ++i){
|
|
if (i > 4){
|
|
dt = 0.6;
|
|
}
|
|
|
|
/* printf("%.2f\t%.2f\t%.2f\t%.2f\n", t, x_ego, v_ego, a_l); */
|
|
acadoVariables.x[i*NX] = x_ego;
|
|
acadoVariables.x[i*NX+1] = v_ego;
|
|
acadoVariables.x[i*NX+2] = a_ego;
|
|
|
|
v_ego += a_ego * dt;
|
|
|
|
if (v_ego <= 0.0) {
|
|
v_ego = 0.0;
|
|
a_ego = 0.0;
|
|
}
|
|
|
|
x_ego += v_ego * dt;
|
|
t += dt;
|
|
}
|
|
|
|
for (i = 0; i < NU * N; ++i) acadoVariables.u[ i ] = 0.0;
|
|
for (i = 0; i < NY * N; ++i) acadoVariables.y[ i ] = 0.0;
|
|
for (i = 0; i < NYN; ++i) acadoVariables.yN[ i ] = 0.0;
|
|
}
|
|
|
|
int run_mpc(state_t * x0, log_t * solution, double l, double a_l_0){
|
|
// Calculate lead vehicle predictions
|
|
int i;
|
|
double t = 0.;
|
|
double dt = 0.2;
|
|
double x_l = x0->x_l;
|
|
double v_l = x0->v_l;
|
|
double a_l = a_l_0;
|
|
|
|
/* printf("t\tx_l\t_v_l\t_al\n"); */
|
|
for (i = 0; i < N + 1; ++i){
|
|
if (i > 4){
|
|
dt = 0.6;
|
|
}
|
|
|
|
/* printf("%.2f\t%.2f\t%.2f\t%.2f\n", t, x_l, v_l, a_l); */
|
|
|
|
acadoVariables.od[i*NOD] = x_l;
|
|
acadoVariables.od[i*NOD+1] = v_l;
|
|
|
|
solution->x_l[i] = x_l;
|
|
solution->v_l[i] = v_l;
|
|
solution->a_l[i] = a_l;
|
|
solution->t[i] = t;
|
|
|
|
a_l = a_l_0 * exp(-l * t * t / 2);
|
|
x_l += v_l * dt;
|
|
v_l += a_l * dt;
|
|
if (v_l < 0.0){
|
|
a_l = 0.0;
|
|
v_l = 0.0;
|
|
}
|
|
|
|
t += dt;
|
|
}
|
|
|
|
acadoVariables.x[0] = acadoVariables.x0[0] = x0->x_ego;
|
|
acadoVariables.x[1] = acadoVariables.x0[1] = x0->v_ego;
|
|
acadoVariables.x[2] = acadoVariables.x0[2] = x0->a_ego;
|
|
|
|
acado_preparationStep();
|
|
acado_feedbackStep();
|
|
|
|
for (i = 0; i <= N; i++){
|
|
solution->x_ego[i] = acadoVariables.x[i*NX];
|
|
solution->v_ego[i] = acadoVariables.x[i*NX+1];
|
|
solution->a_ego[i] = acadoVariables.x[i*NX+2];
|
|
|
|
if (i < N){
|
|
solution->j_ego[i] = acadoVariables.u[i];
|
|
}
|
|
}
|
|
solution->cost = acado_getObjective();
|
|
|
|
// Dont shift states here. Current solution is closer to next timestep than if
|
|
// we shift by 0.2 seconds.
|
|
|
|
return acado_getNWSR();
|
|
}
|
|
|