You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							66 lines
						
					
					
						
							1.6 KiB
						
					
					
				
			
		
		
	
	
							66 lines
						
					
					
						
							1.6 KiB
						
					
					
				| import bisect
 | |
| import numpy as np
 | |
| from scipy.interpolate import interp1d
 | |
| 
 | |
| 
 | |
| def deep_interp_0_fast(dx, x, y):
 | |
|   FIX = False
 | |
|   if len(y.shape) == 1:
 | |
|     y = y[:, None]
 | |
|     FIX = True
 | |
|   ret = np.zeros((dx.shape[0], y.shape[1]))
 | |
|   index = list(x)
 | |
|   for i in range(dx.shape[0]):
 | |
|     idx = bisect.bisect_left(index, dx[i])
 | |
|     if idx == x.shape[0]:
 | |
|       idx = x.shape[0] - 1
 | |
|     ret[i] = y[idx]
 | |
| 
 | |
|   if FIX:
 | |
|     return ret[:, 0]
 | |
|   else:
 | |
|     return ret
 | |
| 
 | |
| 
 | |
| def running_mean(x, N):
 | |
|   cumsum = np.cumsum(np.insert(x, [0]*(int(N/2)) + [-1]*(N-int(N/2)), [x[0]]*int(N/2) + [x[-1]]*(N-int(N/2))))
 | |
|   return (cumsum[N:] - cumsum[:-N]) / N
 | |
| 
 | |
| 
 | |
| def deep_interp_np(x, xp, fp):
 | |
|   x = np.atleast_1d(x)
 | |
|   xp = np.array(xp)
 | |
|   if len(xp) < 2:
 | |
|     return np.repeat(fp, len(x), axis=0)
 | |
|   if min(np.diff(xp)) < 0:
 | |
|     raise RuntimeError('Bad x array for interpolation')
 | |
|   j = np.searchsorted(xp, x) - 1
 | |
|   j = np.clip(j, 0, len(xp)-2)
 | |
|   d = np.divide(x - xp[j], xp[j + 1] - xp[j], out=np.ones_like(x, dtype=np.float64), where=xp[j + 1] - xp[j] != 0)
 | |
|   vals_interp = (fp[j].T*(1 - d)).T + (fp[j + 1].T*d).T
 | |
|   if len(vals_interp) == 1:
 | |
|     return vals_interp[0]
 | |
|   else:
 | |
|     return vals_interp
 | |
| 
 | |
| 
 | |
| def clipping_deep_interp(x, xp, fp):
 | |
|   if len(xp) < 2:
 | |
|     return deep_interp_np(x, xp, fp)
 | |
|   bad_idx = np.where(np.diff(xp) < 0)[0]
 | |
|   if len(bad_idx) > 0:
 | |
|     if bad_idx[0] ==1:
 | |
|       return np.zeros([] + list(fp.shape[1:]))
 | |
|     return deep_interp_np(x, xp[:bad_idx[0]], fp[:bad_idx[0]])
 | |
|   else:
 | |
|     return deep_interp_np(x, xp, fp)
 | |
| 
 | |
| 
 | |
| def deep_interp(dx, x, y, kind="slinear"):
 | |
|   return interp1d(
 | |
|     x, y,
 | |
|     axis=0,
 | |
|     kind=kind,
 | |
|     bounds_error=False,
 | |
|     fill_value="extrapolate",
 | |
|     assume_sorted=True)(dx)
 | |
| 
 |