You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							86 lines
						
					
					
						
							4.6 KiB
						
					
					
				
			
		
		
	
	
							86 lines
						
					
					
						
							4.6 KiB
						
					
					
				| import math
 | |
| import numpy as np
 | |
| 
 | |
| from cereal import log
 | |
| from opendbc.car import FRICTION_THRESHOLD, get_friction
 | |
| from opendbc.car.interfaces import LatControlInputs
 | |
| from opendbc.car.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
 | |
| from openpilot.selfdrive.controls.lib.latcontrol import LatControl
 | |
| from openpilot.common.pid import PIDController
 | |
| 
 | |
| # At higher speeds (25+mph) we can assume:
 | |
| # Lateral acceleration achieved by a specific car correlates to
 | |
| # torque applied to the steering rack. It does not correlate to
 | |
| # wheel slip, or to speed.
 | |
| 
 | |
| # This controller applies torque to achieve desired lateral
 | |
| # accelerations. To compensate for the low speed effects we
 | |
| # use a LOW_SPEED_FACTOR in the error. Additionally, there is
 | |
| # friction in the steering wheel that needs to be overcome to
 | |
| # move it at all, this is compensated for too.
 | |
| 
 | |
| LOW_SPEED_X = [0, 10, 20, 30]
 | |
| LOW_SPEED_Y = [15, 13, 10, 5]
 | |
| 
 | |
| 
 | |
| class LatControlTorque(LatControl):
 | |
|   def __init__(self, CP, CI):
 | |
|     super().__init__(CP, CI)
 | |
|     self.torque_params = CP.lateralTuning.torque.as_builder()
 | |
|     self.pid = PIDController(self.torque_params.kp, self.torque_params.ki,
 | |
|                              k_f=self.torque_params.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
 | |
|     self.torque_from_lateral_accel = CI.torque_from_lateral_accel()
 | |
|     self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg
 | |
| 
 | |
|   def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction):
 | |
|     self.torque_params.latAccelFactor = latAccelFactor
 | |
|     self.torque_params.latAccelOffset = latAccelOffset
 | |
|     self.torque_params.friction = friction
 | |
| 
 | |
|   def update(self, active, CS, VM, params, steer_limited_by_controls, desired_curvature, curvature_limited):
 | |
|     pid_log = log.ControlsState.LateralTorqueState.new_message()
 | |
|     if not active:
 | |
|       output_torque = 0.0
 | |
|       pid_log.active = False
 | |
|     else:
 | |
|       actual_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
 | |
|       roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY
 | |
|       curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0))
 | |
|       desired_lateral_accel = desired_curvature * CS.vEgo ** 2
 | |
| 
 | |
|       # desired rate is the desired rate of change in the setpoint, not the absolute desired curvature
 | |
|       # desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2
 | |
|       actual_lateral_accel = actual_curvature * CS.vEgo ** 2
 | |
|       lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
 | |
| 
 | |
|       low_speed_factor = np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2
 | |
|       setpoint = desired_lateral_accel + low_speed_factor * desired_curvature
 | |
|       measurement = actual_lateral_accel + low_speed_factor * actual_curvature
 | |
|       gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation
 | |
|       torque_from_setpoint = self.torque_from_lateral_accel(LatControlInputs(setpoint, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
 | |
|                                                             gravity_adjusted=False)
 | |
|       torque_from_measurement = self.torque_from_lateral_accel(LatControlInputs(measurement, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
 | |
|                                                                gravity_adjusted=False)
 | |
|       pid_log.error = float(torque_from_setpoint - torque_from_measurement)
 | |
|       ff = self.torque_from_lateral_accel(LatControlInputs(gravity_adjusted_lateral_accel, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
 | |
|                                           gravity_adjusted=True)
 | |
|       ff += get_friction(desired_lateral_accel - actual_lateral_accel, lateral_accel_deadzone, FRICTION_THRESHOLD, self.torque_params)
 | |
| 
 | |
|       freeze_integrator = steer_limited_by_controls or CS.steeringPressed or CS.vEgo < 5
 | |
|       output_torque = self.pid.update(pid_log.error,
 | |
|                                       feedforward=ff,
 | |
|                                       speed=CS.vEgo,
 | |
|                                       freeze_integrator=freeze_integrator)
 | |
| 
 | |
|       pid_log.active = True
 | |
|       pid_log.p = float(self.pid.p)
 | |
|       pid_log.i = float(self.pid.i)
 | |
|       pid_log.d = float(self.pid.d)
 | |
|       pid_log.f = float(self.pid.f)
 | |
|       pid_log.output = float(-output_torque)
 | |
|       pid_log.actualLateralAccel = float(actual_lateral_accel)
 | |
|       pid_log.desiredLateralAccel = float(desired_lateral_accel)
 | |
|       pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited_by_controls, curvature_limited))
 | |
| 
 | |
|     # TODO left is positive in this convention
 | |
|     return -output_torque, 0.0, pid_log
 | |
| 
 |