openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

111 lines
3.2 KiB

import ast, pathlib, unittest
import numpy as np
from PIL import Image
from tinygrad import Tensor
from tinygrad.helpers import getenv, CI
from extra.models.efficientnet import EfficientNet
from extra.models.vit import ViT
from extra.models.resnet import ResNet50
def _load_labels():
labels_filename = pathlib.Path(__file__).parent / 'efficientnet/imagenet1000_clsidx_to_labels.txt'
return ast.literal_eval(labels_filename.read_text())
_LABELS = _load_labels()
def preprocess(img, new=False):
# preprocess image
aspect_ratio = img.size[0] / img.size[1]
img = img.resize((int(224*max(aspect_ratio,1.0)), int(224*max(1.0/aspect_ratio,1.0))))
img = np.array(img)
y0, x0 =(np.asarray(img.shape)[:2] - 224) // 2
img = img[y0: y0 + 224, x0: x0 + 224]
# low level preprocess
if new:
img = img.astype(np.float32)
img -= [127.0, 127.0, 127.0]
img /= [128.0, 128.0, 128.0]
img = img[None]
else:
img = np.moveaxis(img, [2, 0, 1], [0, 1, 2])
img = img.astype(np.float32)[:3].reshape(1, 3, 224, 224)
img /= 255.0
img -= np.array([0.485, 0.456, 0.406]).reshape((1, -1, 1, 1))
img /= np.array([0.229, 0.224, 0.225]).reshape((1, -1, 1, 1))
return img
def _infer(model: EfficientNet, img):
with Tensor.train(False):
out = model.forward(Tensor(img)).argmax(axis=-1)
return out.tolist()
chicken_img = preprocess(Image.open(pathlib.Path(__file__).parent / 'efficientnet/Chicken.jpg'))
car_img = preprocess(Image.open(pathlib.Path(__file__).parent / 'efficientnet/car.jpg'))
class TestEfficientNet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = EfficientNet(number=getenv("NUM"))
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
@unittest.skipIf(CI, "covered by test_chicken_car")
def test_chicken(self):
labels = _infer(self.model, chicken_img)
self.assertEqual(_LABELS[labels[0]], "hen")
@unittest.skipIf(CI, "covered by test_chicken_car")
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "sports car, sport car")
def test_chicken_car(self):
labels = _infer(self.model, np.concat([chicken_img, car_img], axis=0))
self.assertEqual(_LABELS[labels[0]], "hen")
self.assertEqual(_LABELS[labels[1]], "sports car, sport car")
class TestViT(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = ViT()
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
labels = _infer(self.model, chicken_img)
self.assertEqual(_LABELS[labels[0]], "cock")
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "racer, race car, racing car")
class TestResNet(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = ResNet50()
cls.model.load_from_pretrained()
@classmethod
def tearDownClass(cls):
del cls.model
def test_chicken(self):
labels = _infer(self.model, chicken_img)
self.assertEqual(_LABELS[labels[0]], "hen")
def test_car(self):
labels = _infer(self.model, car_img)
self.assertEqual(_LABELS[labels[0]], "sports car, sport car")
if __name__ == '__main__':
unittest.main()