openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

93 lines
3.3 KiB

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad.frontend.onnx import OnnxRunner
from tinygrad.device import Device
from tinygrad.helpers import fetch, Context
from extra.onnx_helpers import validate
from extra.huggingface_onnx.huggingface_manager import DOWNLOADS_DIR, snapshot_download_with_retry
def run_onnx_torch(onnx_model, inputs):
import torch
from onnx2torch import convert
torch_model = convert(onnx_model).float()
with torch.no_grad():
torch_out = torch_model(*[torch.tensor(x) for x in inputs.values()])
return torch_out
np.random.seed(1337)
class TestOnnxModel(unittest.TestCase):
@unittest.skip("slow")
def test_efficientnet(self):
input_name, input_new = "images:0", True
self._test_model(
fetch("https://github.com/onnx/models/raw/main/validated/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx"),
input_name, input_new)
@unittest.skip("TODO: FIX THIS IT CAUSES SEGFAULT")
def test_shufflenet(self):
input_name, input_new = "gpu_0/data_0", False
self._test_model(
fetch("https://github.com/onnx/models/raw/main/validated/vision/classification/shufflenet/model/shufflenet-9.onnx"),
input_name, input_new)
@unittest.skip("test is very slow")
def test_resnet(self):
# NOTE: many onnx models can't be run right now due to max pool with strides != kernel_size
input_name, input_new = "data", False
self._test_model(
fetch("https://github.com/onnx/models/raw/main/validated/vision/classification/resnet/model/resnet18-v2-7.onnx"),
input_name, input_new)
def _test_model(self, fn, input_name, input_new, debug=False):
run_onnx = OnnxRunner(fn)
print("onnx loaded")
from test.models.test_efficientnet import chicken_img, car_img, preprocess, _LABELS
def run(img):
inputs = {input_name: preprocess(img, new=input_new)}
tinygrad_out = list(run_onnx(inputs, debug=debug).values())[0].numpy()
return tinygrad_out.argmax()
cls = run(chicken_img)
print(cls, _LABELS[cls])
assert _LABELS[cls] == "hen" or _LABELS[cls] == "cock"
cls = run(car_img)
print(cls, _LABELS[cls])
assert "car" in _LABELS[cls] or _LABELS[cls] == "convertible"
@unittest.skipUnless(Device.DEFAULT == "METAL", "only run on METAL")
class TestHuggingFaceOnnxModels(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._ctx = Context(MAX_BUFFER_SIZE=0)
cls._ctx.__enter__()
@classmethod
def tearDownClass(cls):
cls._ctx.__exit__()
def _validate(self, repo_id, model_file, custom_inputs, rtol=1e-4, atol=1e-4):
onnx_model_path = snapshot_download_with_retry(
repo_id=repo_id,
allow_patterns=["*.onnx", "*.onnx_data"],
cache_dir=str(DOWNLOADS_DIR)
)
onnx_model_path = onnx_model_path / model_file
file_size = onnx_model_path.stat().st_size
print(f"Validating model: {repo_id}/{model_file} ({file_size/1e6:.2f}M)")
validate(onnx_model_path, custom_inputs, rtol=rtol, atol=atol)
def test_xlm_roberta_large(self):
repo_id = "FacebookAI/xlm-roberta-large"
model_file = "onnx/model.onnx"
custom_inputs = {
"input_ids": np.random.randint(0, 250002, (1, 11), dtype=np.int64),
"attention_mask": np.ones((1, 11), dtype=np.int64),
}
self._validate(repo_id, model_file, custom_inputs)
if __name__ == "__main__":
unittest.main()