You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							257 lines
						
					
					
						
							7.5 KiB
						
					
					
				
			
		
		
	
	
							257 lines
						
					
					
						
							7.5 KiB
						
					
					
				| /*
 | |
|  * Copyright 2013 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| #ifndef TMAT_IMPLEMENTATION
 | |
| #error "Don't include TMatHelpers.h directly. use ui/mat*.h instead"
 | |
| #else
 | |
| #undef TMAT_IMPLEMENTATION
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifndef UI_TMAT_HELPERS_H
 | |
| #define UI_TMAT_HELPERS_H
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <sys/types.h>
 | |
| #include <math.h>
 | |
| #include <utils/Debug.h>
 | |
| #include <utils/String8.h>
 | |
| 
 | |
| #define PURE __attribute__((pure))
 | |
| 
 | |
| namespace android {
 | |
| // -------------------------------------------------------------------------------------
 | |
| 
 | |
| /*
 | |
|  * No user serviceable parts here.
 | |
|  *
 | |
|  * Don't use this file directly, instead include ui/mat*.h
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Matrix utilities
 | |
|  */
 | |
| 
 | |
| namespace matrix {
 | |
| 
 | |
| inline int     PURE transpose(int v)    { return v; }
 | |
| inline float   PURE transpose(float v)  { return v; }
 | |
| inline double  PURE transpose(double v) { return v; }
 | |
| 
 | |
| inline int     PURE trace(int v)    { return v; }
 | |
| inline float   PURE trace(float v)  { return v; }
 | |
| inline double  PURE trace(double v) { return v; }
 | |
| 
 | |
| template<typename MATRIX>
 | |
| MATRIX PURE inverse(const MATRIX& src) {
 | |
| 
 | |
|     COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX::COL_SIZE == MATRIX::ROW_SIZE );
 | |
| 
 | |
|     typename MATRIX::value_type t;
 | |
|     const size_t N = MATRIX::col_size();
 | |
|     size_t swap;
 | |
|     MATRIX tmp(src);
 | |
|     MATRIX inverse(1);
 | |
| 
 | |
|     for (size_t i=0 ; i<N ; i++) {
 | |
|         // look for largest element in column
 | |
|         swap = i;
 | |
|         for (size_t j=i+1 ; j<N ; j++) {
 | |
|             if (fabs(tmp[j][i]) > fabs(tmp[i][i])) {
 | |
|                 swap = j;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (swap != i) {
 | |
|             /* swap rows. */
 | |
|             for (size_t k=0 ; k<N ; k++) {
 | |
|                 t = tmp[i][k];
 | |
|                 tmp[i][k] = tmp[swap][k];
 | |
|                 tmp[swap][k] = t;
 | |
| 
 | |
|                 t = inverse[i][k];
 | |
|                 inverse[i][k] = inverse[swap][k];
 | |
|                 inverse[swap][k] = t;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         t = 1 / tmp[i][i];
 | |
|         for (size_t k=0 ; k<N ; k++) {
 | |
|             tmp[i][k] *= t;
 | |
|             inverse[i][k] *= t;
 | |
|         }
 | |
|         for (size_t j=0 ; j<N ; j++) {
 | |
|             if (j != i) {
 | |
|                 t = tmp[j][i];
 | |
|                 for (size_t k=0 ; k<N ; k++) {
 | |
|                     tmp[j][k] -= tmp[i][k] * t;
 | |
|                     inverse[j][k] -= inverse[i][k] * t;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return inverse;
 | |
| }
 | |
| 
 | |
| template<typename MATRIX_R, typename MATRIX_A, typename MATRIX_B>
 | |
| MATRIX_R PURE multiply(const MATRIX_A& lhs, const MATRIX_B& rhs) {
 | |
|     // pre-requisite:
 | |
|     //  lhs : D columns, R rows
 | |
|     //  rhs : C columns, D rows
 | |
|     //  res : C columns, R rows
 | |
| 
 | |
|     COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX_A::ROW_SIZE == MATRIX_B::COL_SIZE );
 | |
|     COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX_R::ROW_SIZE == MATRIX_B::ROW_SIZE );
 | |
|     COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX_R::COL_SIZE == MATRIX_A::COL_SIZE );
 | |
| 
 | |
|     MATRIX_R res(MATRIX_R::NO_INIT);
 | |
|     for (size_t r=0 ; r<MATRIX_R::row_size() ; r++) {
 | |
|         res[r] = lhs * rhs[r];
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| // transpose. this handles matrices of matrices
 | |
| template <typename MATRIX>
 | |
| MATRIX PURE transpose(const MATRIX& m) {
 | |
|     // for now we only handle square matrix transpose
 | |
|     COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX::ROW_SIZE == MATRIX::COL_SIZE );
 | |
|     MATRIX result(MATRIX::NO_INIT);
 | |
|     for (size_t r=0 ; r<MATRIX::row_size() ; r++)
 | |
|         for (size_t c=0 ; c<MATRIX::col_size() ; c++)
 | |
|             result[c][r] = transpose(m[r][c]);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // trace. this handles matrices of matrices
 | |
| template <typename MATRIX>
 | |
| typename MATRIX::value_type PURE trace(const MATRIX& m) {
 | |
|     COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX::ROW_SIZE == MATRIX::COL_SIZE );
 | |
|     typename MATRIX::value_type result(0);
 | |
|     for (size_t r=0 ; r<MATRIX::row_size() ; r++)
 | |
|         result += trace(m[r][r]);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // trace. this handles matrices of matrices
 | |
| template <typename MATRIX>
 | |
| typename MATRIX::col_type PURE diag(const MATRIX& m) {
 | |
|     COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX::ROW_SIZE == MATRIX::COL_SIZE );
 | |
|     typename MATRIX::col_type result(MATRIX::col_type::NO_INIT);
 | |
|     for (size_t r=0 ; r<MATRIX::row_size() ; r++)
 | |
|         result[r] = m[r][r];
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| template <typename MATRIX>
 | |
| String8 asString(const MATRIX& m) {
 | |
|     String8 s;
 | |
|     for (size_t c=0 ; c<MATRIX::col_size() ; c++) {
 | |
|         s.append("|  ");
 | |
|         for (size_t r=0 ; r<MATRIX::row_size() ; r++) {
 | |
|             s.appendFormat("%7.2f  ", m[r][c]);
 | |
|         }
 | |
|         s.append("|\n");
 | |
|     }
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| }; // namespace matrix
 | |
| 
 | |
| // -------------------------------------------------------------------------------------
 | |
| 
 | |
| /*
 | |
|  * TMatProductOperators implements basic arithmetic and basic compound assignments
 | |
|  * operators on a vector of type BASE<T>.
 | |
|  *
 | |
|  * BASE only needs to implement operator[] and size().
 | |
|  * By simply inheriting from TMatProductOperators<BASE, T> BASE will automatically
 | |
|  * get all the functionality here.
 | |
|  */
 | |
| 
 | |
| template <template<typename T> class BASE, typename T>
 | |
| class TMatProductOperators {
 | |
| public:
 | |
|     // multiply by a scalar
 | |
|     BASE<T>& operator *= (T v) {
 | |
|         BASE<T>& lhs(static_cast< BASE<T>& >(*this));
 | |
|         for (size_t r=0 ; r<lhs.row_size() ; r++) {
 | |
|             lhs[r] *= v;
 | |
|         }
 | |
|         return lhs;
 | |
|     }
 | |
| 
 | |
|     // divide by a scalar
 | |
|     BASE<T>& operator /= (T v) {
 | |
|         BASE<T>& lhs(static_cast< BASE<T>& >(*this));
 | |
|         for (size_t r=0 ; r<lhs.row_size() ; r++) {
 | |
|             lhs[r] /= v;
 | |
|         }
 | |
|         return lhs;
 | |
|     }
 | |
| 
 | |
|     // matrix * matrix, result is a matrix of the same type than the lhs matrix
 | |
|     template<typename U>
 | |
|     friend BASE<T> PURE operator *(const BASE<T>& lhs, const BASE<U>& rhs) {
 | |
|         return matrix::multiply<BASE<T> >(lhs, rhs);
 | |
|     }
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * TMatSquareFunctions implements functions on a matrix of type BASE<T>.
 | |
|  *
 | |
|  * BASE only needs to implement:
 | |
|  *  - operator[]
 | |
|  *  - col_type
 | |
|  *  - row_type
 | |
|  *  - COL_SIZE
 | |
|  *  - ROW_SIZE
 | |
|  *
 | |
|  * By simply inheriting from TMatSquareFunctions<BASE, T> BASE will automatically
 | |
|  * get all the functionality here.
 | |
|  */
 | |
| 
 | |
| template<template<typename U> class BASE, typename T>
 | |
| class TMatSquareFunctions {
 | |
| public:
 | |
|     /*
 | |
|      * NOTE: the functions below ARE NOT member methods. They are friend functions
 | |
|      * with they definition inlined with their declaration. This makes these
 | |
|      * template functions available to the compiler when (and only when) this class
 | |
|      * is instantiated, at which point they're only templated on the 2nd parameter
 | |
|      * (the first one, BASE<T> being known).
 | |
|      */
 | |
|     friend BASE<T> PURE inverse(const BASE<T>& m)   { return matrix::inverse(m); }
 | |
|     friend BASE<T> PURE transpose(const BASE<T>& m) { return matrix::transpose(m); }
 | |
|     friend T       PURE trace(const BASE<T>& m)     { return matrix::trace(m); }
 | |
| };
 | |
| 
 | |
| template <template<typename T> class BASE, typename T>
 | |
| class TMatDebug {
 | |
| public:
 | |
|     String8 asString() const {
 | |
|         return matrix::asString( static_cast< const BASE<T>& >(*this) );
 | |
|     }
 | |
| };
 | |
| 
 | |
| // -------------------------------------------------------------------------------------
 | |
| }; // namespace android
 | |
| 
 | |
| #undef PURE
 | |
| 
 | |
| #endif /* UI_TMAT_HELPERS_H */
 | |
| 
 |