You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
8.9 KiB
203 lines
8.9 KiB
#include <string.h>
|
|
#include "dmonitoring.h"
|
|
#include "common/mat.h"
|
|
#include "common/timing.h"
|
|
#include "common/params.h"
|
|
|
|
#include <libyuv.h>
|
|
|
|
#define MODEL_WIDTH 320
|
|
#define MODEL_HEIGHT 640
|
|
#define FULL_W 852 // should get these numbers from camerad
|
|
|
|
#if defined(QCOM) || defined(QCOM2)
|
|
#define input_lambda(x) (x - 128.f) * 0.0078125f
|
|
#else
|
|
#define input_lambda(x) x // for non SNPE running platforms, assume keras model instead has lambda layer
|
|
#endif
|
|
|
|
void dmonitoring_init(DMonitoringModelState* s) {
|
|
#if defined(QCOM) || defined(QCOM2)
|
|
const char* model_path = "../../models/dmonitoring_model_q.dlc";
|
|
#else
|
|
const char* model_path = "../../models/dmonitoring_model.dlc";
|
|
#endif
|
|
|
|
int runtime = USE_DSP_RUNTIME;
|
|
s->m = new DefaultRunModel(model_path, &s->output[0], OUTPUT_SIZE, runtime);
|
|
s->is_rhd = Params().read_db_bool("IsRHD");
|
|
}
|
|
|
|
template <class T>
|
|
static inline T *get_buffer(std::vector<T> &buf, const size_t size) {
|
|
if (buf.size() < size) buf.resize(size);
|
|
return buf.data();
|
|
}
|
|
|
|
static inline auto get_yuv_buf(std::vector<uint8_t> &buf, const int width, int height) {
|
|
uint8_t *y = get_buffer(buf, width * height * 3 / 2);
|
|
uint8_t *u = y + width * height;
|
|
uint8_t *v = u + (width /2) * (height / 2);
|
|
return std::make_tuple(y, u, v);
|
|
}
|
|
|
|
DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height) {
|
|
uint8_t *raw_buf = (uint8_t*) stream_buf;
|
|
uint8_t *raw_y_buf = raw_buf;
|
|
uint8_t *raw_u_buf = raw_y_buf + (width * height);
|
|
uint8_t *raw_v_buf = raw_u_buf + ((width/2) * (height/2));
|
|
|
|
#ifndef QCOM2
|
|
const int cropped_width = height/2;
|
|
const int cropped_height = height;
|
|
const int global_x_offset = 0;
|
|
const int global_y_offset = 0;
|
|
const int crop_x_offset = width - cropped_width;
|
|
const int crop_y_offset = 0;
|
|
#else
|
|
const int full_width_tici = 1928;
|
|
const int full_height_tici = 1208;
|
|
const int adapt_width_tici = 668;
|
|
|
|
const int cropped_height = adapt_width_tici / 1.33;
|
|
const int cropped_width = cropped_height / 2;
|
|
const int global_x_offset = full_width_tici / 2 - adapt_width_tici / 2;
|
|
const int global_y_offset = full_height_tici / 2 - cropped_height / 2;
|
|
const int crop_x_offset = adapt_width_tici - cropped_width + 32;
|
|
const int crop_y_offset = -196;
|
|
#endif
|
|
|
|
int resized_width = MODEL_WIDTH;
|
|
int resized_height = MODEL_HEIGHT;
|
|
|
|
auto [cropped_y_buf, cropped_u_buf, cropped_v_buf] = get_yuv_buf(s->cropped_buf, cropped_width, cropped_height);
|
|
if (!s->is_rhd) {
|
|
for (int r = 0; r < cropped_height/2; r++) {
|
|
memcpy(cropped_y_buf + 2*r*cropped_width, raw_y_buf + (2*r + global_y_offset + crop_y_offset)*width + global_x_offset + crop_x_offset, cropped_width);
|
|
memcpy(cropped_y_buf + (2*r+1)*cropped_width, raw_y_buf + (2*r + global_y_offset + crop_y_offset + 1)*width + global_x_offset + crop_x_offset, cropped_width);
|
|
memcpy(cropped_u_buf + r*(cropped_width/2), raw_u_buf + (r + (global_y_offset + crop_y_offset)/2)*width/2 + (global_x_offset + crop_x_offset)/2, cropped_width/2);
|
|
memcpy(cropped_v_buf + r*(cropped_width/2), raw_v_buf + (r + (global_y_offset + crop_y_offset)/2)*width/2 + (global_x_offset + crop_x_offset)/2, cropped_width/2);
|
|
}
|
|
} else {
|
|
auto [premirror_cropped_y_buf, premirror_cropped_u_buf, premirror_cropped_v_buf] = get_yuv_buf(s->premirror_cropped_buf, cropped_width, cropped_height);
|
|
for (int r = 0; r < cropped_height/2; r++) {
|
|
memcpy(premirror_cropped_y_buf + (2*r)*cropped_width, raw_y_buf + (2*r + global_y_offset + crop_y_offset)*width + global_x_offset, cropped_width);
|
|
memcpy(premirror_cropped_y_buf + (2*r+1)*cropped_width, raw_y_buf + (2*r + global_y_offset + crop_y_offset + 1)*width + global_x_offset, cropped_width);
|
|
memcpy(premirror_cropped_u_buf + r*(cropped_width/2), raw_u_buf + (r + (global_y_offset + crop_y_offset)/2)*width/2 + global_x_offset/2, cropped_width/2);
|
|
memcpy(premirror_cropped_v_buf + r*(cropped_width/2), raw_v_buf + (r + (global_y_offset + crop_y_offset)/2)*width/2 + global_x_offset/2, cropped_width/2);
|
|
}
|
|
libyuv::I420Mirror(premirror_cropped_y_buf, cropped_width,
|
|
premirror_cropped_u_buf, cropped_width/2,
|
|
premirror_cropped_v_buf, cropped_width/2,
|
|
cropped_y_buf, cropped_width,
|
|
cropped_u_buf, cropped_width/2,
|
|
cropped_v_buf, cropped_width/2,
|
|
cropped_width, cropped_height);
|
|
}
|
|
|
|
auto [resized_buf, resized_u_buf, resized_v_buf] = get_yuv_buf(s->resized_buf, resized_width, resized_height);
|
|
uint8_t *resized_y_buf = resized_buf;
|
|
libyuv::FilterMode mode = libyuv::FilterModeEnum::kFilterBilinear;
|
|
libyuv::I420Scale(cropped_y_buf, cropped_width,
|
|
cropped_u_buf, cropped_width/2,
|
|
cropped_v_buf, cropped_width/2,
|
|
cropped_width, cropped_height,
|
|
resized_y_buf, resized_width,
|
|
resized_u_buf, resized_width/2,
|
|
resized_v_buf, resized_width/2,
|
|
resized_width, resized_height,
|
|
mode);
|
|
|
|
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
|
|
float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len);
|
|
// one shot conversion, O(n) anyway
|
|
// yuvframe2tensor, normalize
|
|
for (int r = 0; r < MODEL_HEIGHT/2; r++) {
|
|
for (int c = 0; c < MODEL_WIDTH/2; c++) {
|
|
// Y_ul
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (0*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r)*resized_width + (2*c)]);
|
|
// Y_dl
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (1*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r+1)*resized_width + (2*c)]);
|
|
// Y_ur
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r)*resized_width + (2*c+1)]);
|
|
// Y_dr
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r+1)*resized_width + (2*c+1)]);
|
|
// U
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + r*resized_width/2 + c]);
|
|
// V
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + ((resized_width/2)*(resized_height/2)) + c + (r*resized_width/2)]);
|
|
}
|
|
}
|
|
|
|
//printf("preprocess completed. %d \n", yuv_buf_len);
|
|
//FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb");
|
|
//fwrite(raw_buf, height*width*3/2, sizeof(uint8_t), dump_yuv_file);
|
|
//fclose(dump_yuv_file);
|
|
|
|
// *** testing ***
|
|
// idat = np.frombuffer(open("/tmp/inputdump.yuv", "rb").read(), np.float32).reshape(6, 160, 320)
|
|
// imshow(cv2.cvtColor(tensor_to_frames(idat[None]/0.0078125+128)[0], cv2.COLOR_YUV2RGB_I420))
|
|
|
|
//FILE *dump_yuv_file2 = fopen("/tmp/inputdump.yuv", "wb");
|
|
//fwrite(net_input_buf, MODEL_HEIGHT*MODEL_WIDTH*3/2, sizeof(float), dump_yuv_file2);
|
|
//fclose(dump_yuv_file2);
|
|
|
|
double t1 = millis_since_boot();
|
|
s->m->execute(net_input_buf, yuv_buf_len);
|
|
double t2 = millis_since_boot();
|
|
|
|
DMonitoringResult ret = {0};
|
|
for (int i = 0; i < 3; ++i) {
|
|
ret.face_orientation[i] = s->output[i];
|
|
ret.face_orientation_meta[i] = softplus(s->output[6 + i]);
|
|
}
|
|
for (int i = 0; i < 2; ++i) {
|
|
ret.face_position[i] = s->output[3 + i];
|
|
ret.face_position_meta[i] = softplus(s->output[9 + i]);
|
|
}
|
|
ret.face_prob = s->output[12];
|
|
ret.left_eye_prob = s->output[21];
|
|
ret.right_eye_prob = s->output[30];
|
|
ret.left_blink_prob = s->output[31];
|
|
ret.right_blink_prob = s->output[32];
|
|
ret.sg_prob = s->output[33];
|
|
ret.poor_vision = s->output[34];
|
|
ret.partial_face = s->output[35];
|
|
ret.distracted_pose = s->output[36];
|
|
ret.distracted_eyes = s->output[37];
|
|
ret.dsp_execution_time = (t2 - t1) / 1000.;
|
|
return ret;
|
|
}
|
|
|
|
void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringResult &res, float execution_time, kj::ArrayPtr<const float> raw_pred){
|
|
// make msg
|
|
MessageBuilder msg;
|
|
auto framed = msg.initEvent().initDriverState();
|
|
framed.setFrameId(frame_id);
|
|
framed.setModelExecutionTime(execution_time);
|
|
framed.setDspExecutionTime(res.dsp_execution_time);
|
|
|
|
framed.setFaceOrientation(res.face_orientation);
|
|
framed.setFaceOrientationStd(res.face_orientation_meta);
|
|
framed.setFacePosition(res.face_position);
|
|
framed.setFacePositionStd(res.face_position_meta);
|
|
framed.setFaceProb(res.face_prob);
|
|
framed.setLeftEyeProb(res.left_eye_prob);
|
|
framed.setRightEyeProb(res.right_eye_prob);
|
|
framed.setLeftBlinkProb(res.left_blink_prob);
|
|
framed.setRightBlinkProb(res.right_blink_prob);
|
|
framed.setSunglassesProb(res.sg_prob);
|
|
framed.setPoorVision(res.poor_vision);
|
|
framed.setPartialFace(res.partial_face);
|
|
framed.setDistractedPose(res.distracted_pose);
|
|
framed.setDistractedEyes(res.distracted_eyes);
|
|
if (send_raw_pred) {
|
|
framed.setRawPredictions(raw_pred.asBytes());
|
|
}
|
|
|
|
pm.send("driverState", msg);
|
|
}
|
|
|
|
void dmonitoring_free(DMonitoringModelState* s) {
|
|
delete s->m;
|
|
}
|
|
|