You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							322 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
	
	
							322 lines
						
					
					
						
							11 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import importlib
 | |
| import math
 | |
| from collections import deque
 | |
| from typing import Any
 | |
| 
 | |
| import capnp
 | |
| from cereal import messaging, log, car
 | |
| from openpilot.common.numpy_fast import interp
 | |
| from openpilot.common.params import Params
 | |
| from openpilot.common.realtime import DT_CTRL, Ratekeeper, Priority, config_realtime_process
 | |
| from openpilot.common.swaglog import cloudlog
 | |
| from openpilot.common.simple_kalman import KF1D
 | |
| from openpilot.selfdrive.pandad import can_capnp_to_list
 | |
| 
 | |
| 
 | |
| # Default lead acceleration decay set to 50% at 1s
 | |
| _LEAD_ACCEL_TAU = 1.5
 | |
| 
 | |
| # radar tracks
 | |
| SPEED, ACCEL = 0, 1     # Kalman filter states enum
 | |
| 
 | |
| # stationary qualification parameters
 | |
| V_EGO_STATIONARY = 4.   # no stationary object flag below this speed
 | |
| 
 | |
| RADAR_TO_CENTER = 2.7   # (deprecated) RADAR is ~ 2.7m ahead from center of car
 | |
| RADAR_TO_CAMERA = 1.52  # RADAR is ~ 1.5m ahead from center of mesh frame
 | |
| 
 | |
| 
 | |
| class KalmanParams:
 | |
|   def __init__(self, dt: float):
 | |
|     # Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
 | |
|     # hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
 | |
|     assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
 | |
|     self.A = [[1.0, dt], [0.0, 1.0]]
 | |
|     self.C = [1.0, 0.0]
 | |
|     #Q = np.matrix([[10., 0.0], [0.0, 100.]])
 | |
|     #R = 1e3
 | |
|     #K = np.matrix([[ 0.05705578], [ 0.03073241]])
 | |
|     dts = [i * 0.01 for i in range(1, 21)]
 | |
|     K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689,  0.21372394,
 | |
|           0.22761098, 0.24069424, 0.253096,   0.26491023, 0.27621103, 0.28705801,
 | |
|           0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
 | |
|           0.35353899, 0.36200124]
 | |
|     K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
 | |
|           0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
 | |
|           0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
 | |
|           0.26393339, 0.26278425]
 | |
|     self.K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
 | |
| 
 | |
| 
 | |
| class Track:
 | |
|   def __init__(self, identifier: int, v_lead: float, kalman_params: KalmanParams):
 | |
|     self.identifier = identifier
 | |
|     self.cnt = 0
 | |
|     self.aLeadTau = _LEAD_ACCEL_TAU
 | |
|     self.K_A = kalman_params.A
 | |
|     self.K_C = kalman_params.C
 | |
|     self.K_K = kalman_params.K
 | |
|     self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K)
 | |
| 
 | |
|   def update(self, d_rel: float, y_rel: float, v_rel: float, v_lead: float, measured: float):
 | |
|     # relative values, copy
 | |
|     self.dRel = d_rel   # LONG_DIST
 | |
|     self.yRel = y_rel   # -LAT_DIST
 | |
|     self.vRel = v_rel   # REL_SPEED
 | |
|     self.vLead = v_lead
 | |
|     self.measured = measured   # measured or estimate
 | |
| 
 | |
|     # computed velocity and accelerations
 | |
|     if self.cnt > 0:
 | |
|       self.kf.update(self.vLead)
 | |
| 
 | |
|     self.vLeadK = float(self.kf.x[SPEED][0])
 | |
|     self.aLeadK = float(self.kf.x[ACCEL][0])
 | |
| 
 | |
|     # Learn if constant acceleration
 | |
|     if abs(self.aLeadK) < 0.5:
 | |
|       self.aLeadTau = _LEAD_ACCEL_TAU
 | |
|     else:
 | |
|       self.aLeadTau *= 0.9
 | |
| 
 | |
|     self.cnt += 1
 | |
| 
 | |
|   def get_key_for_cluster(self):
 | |
|     # Weigh y higher since radar is inaccurate in this dimension
 | |
|     return [self.dRel, self.yRel*2, self.vRel]
 | |
| 
 | |
|   def reset_a_lead(self, aLeadK: float, aLeadTau: float):
 | |
|     self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K)
 | |
|     self.aLeadK = aLeadK
 | |
|     self.aLeadTau = aLeadTau
 | |
| 
 | |
|   def get_RadarState(self, model_prob: float = 0.0):
 | |
|     return {
 | |
|       "dRel": float(self.dRel),
 | |
|       "yRel": float(self.yRel),
 | |
|       "vRel": float(self.vRel),
 | |
|       "vLead": float(self.vLead),
 | |
|       "vLeadK": float(self.vLeadK),
 | |
|       "aLeadK": float(self.aLeadK),
 | |
|       "aLeadTau": float(self.aLeadTau),
 | |
|       "status": True,
 | |
|       "fcw": self.is_potential_fcw(model_prob),
 | |
|       "modelProb": model_prob,
 | |
|       "radar": True,
 | |
|       "radarTrackId": self.identifier,
 | |
|     }
 | |
| 
 | |
|   def potential_low_speed_lead(self, v_ego: float):
 | |
|     # stop for stuff in front of you and low speed, even without model confirmation
 | |
|     # Radar points closer than 0.75, are almost always glitches on toyota radars
 | |
|     return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25)
 | |
| 
 | |
|   def is_potential_fcw(self, model_prob: float):
 | |
|     return model_prob > .9
 | |
| 
 | |
|   def __str__(self):
 | |
|     ret = f"x: {self.dRel:4.1f}  y: {self.yRel:4.1f}  v: {self.vRel:4.1f}  a: {self.aLeadK:4.1f}"
 | |
|     return ret
 | |
| 
 | |
| 
 | |
| def laplacian_pdf(x: float, mu: float, b: float):
 | |
|   b = max(b, 1e-4)
 | |
|   return math.exp(-abs(x-mu)/b)
 | |
| 
 | |
| 
 | |
| def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: dict[int, Track]):
 | |
|   offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
 | |
| 
 | |
|   def prob(c):
 | |
|     prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
 | |
|     prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0])
 | |
|     prob_v = laplacian_pdf(c.vRel + v_ego, lead.v[0], lead.vStd[0])
 | |
| 
 | |
|     # This isn't exactly right, but it's a good heuristic
 | |
|     return prob_d * prob_y * prob_v
 | |
| 
 | |
|   track = max(tracks.values(), key=prob)
 | |
| 
 | |
|   # if no 'sane' match is found return -1
 | |
|   # stationary radar points can be false positives
 | |
|   dist_sane = abs(track.dRel - offset_vision_dist) < max([(offset_vision_dist)*.25, 5.0])
 | |
|   vel_sane = (abs(track.vRel + v_ego - lead.v[0]) < 10) or (v_ego + track.vRel > 3)
 | |
|   if dist_sane and vel_sane:
 | |
|     return track
 | |
|   else:
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def get_RadarState_from_vision(lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float):
 | |
|   lead_v_rel_pred = lead_msg.v[0] - model_v_ego
 | |
|   return {
 | |
|     "dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA),
 | |
|     "yRel": float(-lead_msg.y[0]),
 | |
|     "vRel": float(lead_v_rel_pred),
 | |
|     "vLead": float(v_ego + lead_v_rel_pred),
 | |
|     "vLeadK": float(v_ego + lead_v_rel_pred),
 | |
|     "aLeadK": 0.0,
 | |
|     "aLeadTau": 0.3,
 | |
|     "fcw": False,
 | |
|     "modelProb": float(lead_msg.prob),
 | |
|     "status": True,
 | |
|     "radar": False,
 | |
|     "radarTrackId": -1,
 | |
|   }
 | |
| 
 | |
| 
 | |
| def get_lead(v_ego: float, ready: bool, tracks: dict[int, Track], lead_msg: capnp._DynamicStructReader,
 | |
|              model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]:
 | |
|   # Determine leads, this is where the essential logic happens
 | |
|   if len(tracks) > 0 and ready and lead_msg.prob > .5:
 | |
|     track = match_vision_to_track(v_ego, lead_msg, tracks)
 | |
|   else:
 | |
|     track = None
 | |
| 
 | |
|   lead_dict = {'status': False}
 | |
|   if track is not None:
 | |
|     lead_dict = track.get_RadarState(lead_msg.prob)
 | |
|   elif (track is None) and ready and (lead_msg.prob > .5):
 | |
|     lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego)
 | |
| 
 | |
|   if low_speed_override:
 | |
|     low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
 | |
|     if len(low_speed_tracks) > 0:
 | |
|       closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
 | |
| 
 | |
|       # Only choose new track if it is actually closer than the previous one
 | |
|       if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
 | |
|         lead_dict = closest_track.get_RadarState()
 | |
| 
 | |
|   return lead_dict
 | |
| 
 | |
| 
 | |
| class RadarD:
 | |
|   def __init__(self, radar_ts: float, delay: int = 0):
 | |
|     self.current_time = 0.0
 | |
| 
 | |
|     self.tracks: dict[int, Track] = {}
 | |
|     self.kalman_params = KalmanParams(radar_ts)
 | |
| 
 | |
|     self.v_ego = 0.0
 | |
|     self.v_ego_hist = deque([0.0], maxlen=delay+1)
 | |
|     self.last_v_ego_frame = -1
 | |
| 
 | |
|     self.radar_state: capnp._DynamicStructBuilder | None = None
 | |
|     self.radar_state_valid = False
 | |
| 
 | |
|     self.ready = False
 | |
| 
 | |
|   def update(self, sm: messaging.SubMaster, rr):
 | |
|     self.ready = sm.seen['modelV2']
 | |
|     self.current_time = 1e-9*max(sm.logMonoTime.values())
 | |
| 
 | |
|     radar_points = []
 | |
|     radar_errors = []
 | |
|     if rr is not None:
 | |
|       radar_points = rr.points
 | |
|       radar_errors = rr.errors
 | |
| 
 | |
|     if sm.recv_frame['carState'] != self.last_v_ego_frame:
 | |
|       self.v_ego = sm['carState'].vEgo
 | |
|       self.v_ego_hist.append(self.v_ego)
 | |
|       self.last_v_ego_frame = sm.recv_frame['carState']
 | |
| 
 | |
|     ar_pts = {}
 | |
|     for pt in radar_points:
 | |
|       ar_pts[pt.trackId] = [pt.dRel, pt.yRel, pt.vRel, pt.measured]
 | |
| 
 | |
|     # *** remove missing points from meta data ***
 | |
|     for ids in list(self.tracks.keys()):
 | |
|       if ids not in ar_pts:
 | |
|         self.tracks.pop(ids, None)
 | |
| 
 | |
|     # *** compute the tracks ***
 | |
|     for ids in ar_pts:
 | |
|       rpt = ar_pts[ids]
 | |
| 
 | |
|       # align v_ego by a fixed time to align it with the radar measurement
 | |
|       v_lead = rpt[2] + self.v_ego_hist[0]
 | |
| 
 | |
|       # create the track if it doesn't exist or it's a new track
 | |
|       if ids not in self.tracks:
 | |
|         self.tracks[ids] = Track(ids, v_lead, self.kalman_params)
 | |
|       self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, rpt[3])
 | |
| 
 | |
|     # *** publish radarState ***
 | |
|     self.radar_state_valid = sm.all_checks() and len(radar_errors) == 0
 | |
|     self.radar_state = log.RadarState.new_message()
 | |
|     self.radar_state.mdMonoTime = sm.logMonoTime['modelV2']
 | |
|     self.radar_state.radarErrors = list(radar_errors)
 | |
|     self.radar_state.carStateMonoTime = sm.logMonoTime['carState']
 | |
| 
 | |
|     if len(sm['modelV2'].temporalPose.trans):
 | |
|       model_v_ego = sm['modelV2'].temporalPose.trans[0]
 | |
|     else:
 | |
|       model_v_ego = self.v_ego
 | |
|     leads_v3 = sm['modelV2'].leadsV3
 | |
|     if len(leads_v3) > 1:
 | |
|       self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=True)
 | |
|       self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False)
 | |
| 
 | |
|   def publish(self, pm: messaging.PubMaster, lag_ms: float):
 | |
|     assert self.radar_state is not None
 | |
| 
 | |
|     radar_msg = messaging.new_message("radarState")
 | |
|     radar_msg.valid = self.radar_state_valid
 | |
|     radar_msg.radarState = self.radar_state
 | |
|     radar_msg.radarState.cumLagMs = lag_ms
 | |
|     pm.send("radarState", radar_msg)
 | |
| 
 | |
|     # publish tracks for UI debugging (keep last)
 | |
|     tracks_msg = messaging.new_message('liveTracks', len(self.tracks))
 | |
|     tracks_msg.valid = self.radar_state_valid
 | |
|     for index, tid in enumerate(sorted(self.tracks.keys())):
 | |
|       tracks_msg.liveTracks[index] = {
 | |
|         "trackId": tid,
 | |
|         "dRel": float(self.tracks[tid].dRel),
 | |
|         "yRel": float(self.tracks[tid].yRel),
 | |
|         "vRel": float(self.tracks[tid].vRel),
 | |
|       }
 | |
|     pm.send('liveTracks', tracks_msg)
 | |
| 
 | |
| 
 | |
| # fuses camera and radar data for best lead detection
 | |
| def main():
 | |
|   config_realtime_process(5, Priority.CTRL_LOW)
 | |
| 
 | |
|   # wait for stats about the car to come in from controls
 | |
|   cloudlog.info("radard is waiting for CarParams")
 | |
|   CP = messaging.log_from_bytes(Params().get("CarParams", block=True), car.CarParams)
 | |
|   cloudlog.info("radard got CarParams")
 | |
| 
 | |
|   # import the radar from the fingerprint
 | |
|   cloudlog.info("radard is importing %s", CP.carName)
 | |
|   RadarInterface = importlib.import_module(f'selfdrive.car.{CP.carName}.radar_interface').RadarInterface
 | |
| 
 | |
|   # *** setup messaging
 | |
|   can_sock = messaging.sub_sock('can')
 | |
|   sm = messaging.SubMaster(['modelV2', 'carState'], frequency=int(1./DT_CTRL))
 | |
|   pm = messaging.PubMaster(['radarState', 'liveTracks'])
 | |
| 
 | |
|   RI = RadarInterface(CP)
 | |
| 
 | |
|   rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
 | |
|   RD = RadarD(CP.radarTimeStep, RI.delay)
 | |
| 
 | |
|   while 1:
 | |
|     can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
 | |
|     rr = RI.update(can_capnp_to_list(can_strings))
 | |
|     sm.update(0)
 | |
|     if rr is None:
 | |
|       continue
 | |
| 
 | |
|     RD.update(sm, rr)
 | |
|     RD.publish(pm, -rk.remaining*1000.0)
 | |
| 
 | |
|     rk.monitor_time()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   main()
 | |
| 
 |