You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							150 lines
						
					
					
						
							3.7 KiB
						
					
					
				
			
		
		
	
	
							150 lines
						
					
					
						
							3.7 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
# pylint: skip-file
 | 
						|
# flake8: noqa
 | 
						|
# type: ignore
 | 
						|
 | 
						|
import math
 | 
						|
import multiprocessing
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from selfdrive.locationd.paramsd import ParamsLearner, States
 | 
						|
from tools.lib.logreader import LogReader
 | 
						|
from tools.lib.route import Route
 | 
						|
 | 
						|
ROUTE = "b2f1615665781088|2021-03-14--17-27-47"
 | 
						|
PLOT = True
 | 
						|
 | 
						|
 | 
						|
def load_segment(segment_name):
 | 
						|
  print(f"Loading {segment_name}")
 | 
						|
  if segment_name is None:
 | 
						|
    return []
 | 
						|
 | 
						|
  try:
 | 
						|
    return list(LogReader(segment_name))
 | 
						|
  except ValueError as e:
 | 
						|
    print(f"Error parsing {segment_name}: {e}")
 | 
						|
    return []
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  route = Route(ROUTE)
 | 
						|
 | 
						|
  msgs = []
 | 
						|
  with multiprocessing.Pool(24) as pool:
 | 
						|
    for d in pool.map(load_segment, route.log_paths()):
 | 
						|
      msgs += d
 | 
						|
 | 
						|
  for m in msgs:
 | 
						|
    if m.which() == 'carParams':
 | 
						|
      CP = m.carParams
 | 
						|
      break
 | 
						|
 | 
						|
  params = {
 | 
						|
    'carFingerprint': CP.carFingerprint,
 | 
						|
    'steerRatio': CP.steerRatio,
 | 
						|
    'stiffnessFactor': 1.0,
 | 
						|
    'angleOffsetAverageDeg': 0.0,
 | 
						|
  }
 | 
						|
 | 
						|
  for m in msgs:
 | 
						|
    if m.which() == 'liveParameters':
 | 
						|
      params['steerRatio'] = m.liveParameters.steerRatio
 | 
						|
      params['angleOffsetAverageDeg'] = m.liveParameters.angleOffsetAverageDeg
 | 
						|
      break
 | 
						|
 | 
						|
  for m in msgs:
 | 
						|
    if m.which() == 'carState':
 | 
						|
      last_carstate = m
 | 
						|
      break
 | 
						|
 | 
						|
  print(params)
 | 
						|
  learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']))
 | 
						|
  msgs = [m for m in tqdm(msgs) if m.which() in ('liveLocationKalman', 'carState', 'liveParameters')]
 | 
						|
  msgs = sorted(msgs, key=lambda m: m.logMonoTime)
 | 
						|
 | 
						|
  ts = []
 | 
						|
  ts_log = []
 | 
						|
  results = []
 | 
						|
  results_log = []
 | 
						|
  for m in tqdm(msgs):
 | 
						|
    if m.which() == 'carState':
 | 
						|
      last_carstate = m
 | 
						|
 | 
						|
    elif m.which() == 'liveLocationKalman':
 | 
						|
      t = last_carstate.logMonoTime / 1e9
 | 
						|
      learner.handle_log(t, 'carState', last_carstate.carState)
 | 
						|
 | 
						|
      t = m.logMonoTime / 1e9
 | 
						|
      learner.handle_log(t, 'liveLocationKalman', m.liveLocationKalman)
 | 
						|
 | 
						|
      x = learner.kf.x
 | 
						|
      sr = float(x[States.STEER_RATIO])
 | 
						|
      st = float(x[States.STIFFNESS])
 | 
						|
      ao_avg = math.degrees(x[States.ANGLE_OFFSET])
 | 
						|
      ao = ao_avg + math.degrees(x[States.ANGLE_OFFSET_FAST])
 | 
						|
      r = [sr, st, ao_avg, ao]
 | 
						|
      if any(math.isnan(v) for v in r):
 | 
						|
        print("NaN", t)
 | 
						|
 | 
						|
      ts.append(t)
 | 
						|
      results.append(r)
 | 
						|
 | 
						|
    elif m.which() == 'liveParameters':
 | 
						|
      t = m.logMonoTime / 1e9
 | 
						|
      mm = m.liveParameters
 | 
						|
 | 
						|
      r = [mm.steerRatio, mm.stiffnessFactor, mm.angleOffsetAverageDeg, mm.angleOffsetDeg]
 | 
						|
      if any(math.isnan(v) for v in r):
 | 
						|
        print("NaN in log", t)
 | 
						|
      ts_log.append(t)
 | 
						|
      results_log.append(r)
 | 
						|
 | 
						|
  results = np.asarray(results)
 | 
						|
  results_log = np.asarray(results_log)
 | 
						|
 | 
						|
  if PLOT:
 | 
						|
    import matplotlib.pyplot as plt
 | 
						|
    plt.figure()
 | 
						|
 | 
						|
    plt.subplot(3, 2, 1)
 | 
						|
    plt.plot(ts, results[:, 0], label='Steer Ratio')
 | 
						|
    plt.grid()
 | 
						|
    plt.ylim([0, 20])
 | 
						|
    plt.legend()
 | 
						|
 | 
						|
    plt.subplot(3, 2, 3)
 | 
						|
    plt.plot(ts, results[:, 1], label='Stiffness')
 | 
						|
    plt.ylim([0, 2])
 | 
						|
    plt.grid()
 | 
						|
    plt.legend()
 | 
						|
 | 
						|
    plt.subplot(3, 2, 5)
 | 
						|
    plt.plot(ts, results[:, 2], label='Angle offset (average)')
 | 
						|
    plt.plot(ts, results[:, 3], label='Angle offset (instant)')
 | 
						|
    plt.ylim([-5, 5])
 | 
						|
    plt.grid()
 | 
						|
    plt.legend()
 | 
						|
 | 
						|
    plt.subplot(3, 2, 2)
 | 
						|
    plt.plot(ts_log, results_log[:, 0], label='Steer Ratio')
 | 
						|
    plt.grid()
 | 
						|
    plt.ylim([0, 20])
 | 
						|
    plt.legend()
 | 
						|
 | 
						|
    plt.subplot(3, 2, 4)
 | 
						|
    plt.plot(ts_log, results_log[:, 1], label='Stiffness')
 | 
						|
    plt.ylim([0, 2])
 | 
						|
    plt.grid()
 | 
						|
    plt.legend()
 | 
						|
 | 
						|
    plt.subplot(3, 2, 6)
 | 
						|
    plt.plot(ts_log, results_log[:, 2], label='Angle offset (average)')
 | 
						|
    plt.plot(ts_log, results_log[:, 3], label='Angle offset (instant)')
 | 
						|
    plt.ylim([-5, 5])
 | 
						|
    plt.grid()
 | 
						|
    plt.legend()
 | 
						|
    plt.show()
 | 
						|
 | 
						|
 |