You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
6.9 KiB
180 lines
6.9 KiB
#!/usr/bin/env python3
|
|
import os
|
|
from openpilot.system.hardware import TICI
|
|
if TICI:
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.dtype import dtypes
|
|
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
|
|
os.environ['QCOM'] = '1'
|
|
else:
|
|
from openpilot.selfdrive.modeld.runners.ort_helpers import make_onnx_cpu_runner
|
|
import gc
|
|
import math
|
|
import time
|
|
import pickle
|
|
import ctypes
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from setproctitle import setproctitle
|
|
|
|
from cereal import messaging
|
|
from cereal.messaging import PubMaster, SubMaster
|
|
from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
|
|
from openpilot.common.swaglog import cloudlog
|
|
from openpilot.common.realtime import set_realtime_priority
|
|
from openpilot.common.transformations.model import dmonitoringmodel_intrinsics, DM_INPUT_SIZE
|
|
from openpilot.common.transformations.camera import _ar_ox_fisheye, _os_fisheye
|
|
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext, MonitoringModelFrame
|
|
from openpilot.selfdrive.modeld.parse_model_outputs import sigmoid
|
|
|
|
MODEL_WIDTH, MODEL_HEIGHT = DM_INPUT_SIZE
|
|
CALIB_LEN = 3
|
|
FEATURE_LEN = 512
|
|
OUTPUT_SIZE = 84 + FEATURE_LEN
|
|
|
|
PROCESS_NAME = "selfdrive.modeld.dmonitoringmodeld"
|
|
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
|
|
MODEL_PATH = Path(__file__).parent / 'models/dmonitoring_model.onnx'
|
|
MODEL_PKL_PATH = Path(__file__).parent / 'models/dmonitoring_model_tinygrad.pkl'
|
|
|
|
class DriverStateResult(ctypes.Structure):
|
|
_fields_ = [
|
|
("face_orientation", ctypes.c_float*3),
|
|
("face_position", ctypes.c_float*3),
|
|
("face_orientation_std", ctypes.c_float*3),
|
|
("face_position_std", ctypes.c_float*3),
|
|
("face_prob", ctypes.c_float),
|
|
("_unused_a", ctypes.c_float*8),
|
|
("left_eye_prob", ctypes.c_float),
|
|
("_unused_b", ctypes.c_float*8),
|
|
("right_eye_prob", ctypes.c_float),
|
|
("left_blink_prob", ctypes.c_float),
|
|
("right_blink_prob", ctypes.c_float),
|
|
("sunglasses_prob", ctypes.c_float),
|
|
("occluded_prob", ctypes.c_float),
|
|
("ready_prob", ctypes.c_float*4),
|
|
("not_ready_prob", ctypes.c_float*2)]
|
|
|
|
class DMonitoringModelResult(ctypes.Structure):
|
|
_fields_ = [
|
|
("driver_state_lhd", DriverStateResult),
|
|
("driver_state_rhd", DriverStateResult),
|
|
("poor_vision_prob", ctypes.c_float),
|
|
("wheel_on_right_prob", ctypes.c_float),
|
|
("features", ctypes.c_float*FEATURE_LEN)]
|
|
|
|
class ModelState:
|
|
inputs: dict[str, np.ndarray]
|
|
output: np.ndarray
|
|
|
|
def __init__(self, cl_ctx):
|
|
assert ctypes.sizeof(DMonitoringModelResult) == OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float)
|
|
|
|
self.frame = MonitoringModelFrame(cl_ctx)
|
|
self.numpy_inputs = {
|
|
'calib': np.zeros((1, CALIB_LEN), dtype=np.float32),
|
|
}
|
|
|
|
if TICI:
|
|
self.tensor_inputs = {k: Tensor(v, device='NPY').realize() for k,v in self.numpy_inputs.items()}
|
|
with open(MODEL_PKL_PATH, "rb") as f:
|
|
self.model_run = pickle.load(f)
|
|
else:
|
|
self.onnx_cpu_runner = make_onnx_cpu_runner(MODEL_PATH)
|
|
|
|
def run(self, buf:VisionBuf, calib:np.ndarray, transform:np.ndarray) -> tuple[np.ndarray, float]:
|
|
self.numpy_inputs['calib'][0,:] = calib
|
|
|
|
t1 = time.perf_counter()
|
|
|
|
input_img_cl = self.frame.prepare(buf, transform.flatten())
|
|
if TICI:
|
|
# The imgs tensors are backed by opencl memory, only need init once
|
|
if 'input_img' not in self.tensor_inputs:
|
|
self.tensor_inputs['input_img'] = qcom_tensor_from_opencl_address(input_img_cl.mem_address, (1, MODEL_WIDTH*MODEL_HEIGHT), dtype=dtypes.uint8)
|
|
else:
|
|
self.numpy_inputs['input_img'] = self.frame.buffer_from_cl(input_img_cl).reshape((1, MODEL_WIDTH*MODEL_HEIGHT))
|
|
|
|
if TICI:
|
|
output = self.model_run(**self.tensor_inputs).numpy().flatten()
|
|
else:
|
|
output = self.onnx_cpu_runner.run(None, self.numpy_inputs)[0].flatten()
|
|
|
|
t2 = time.perf_counter()
|
|
return output, t2 - t1
|
|
|
|
|
|
def fill_driver_state(msg, ds_result: DriverStateResult):
|
|
msg.faceOrientation = list(ds_result.face_orientation)
|
|
msg.faceOrientationStd = [math.exp(x) for x in ds_result.face_orientation_std]
|
|
msg.facePosition = list(ds_result.face_position[:2])
|
|
msg.facePositionStd = [math.exp(x) for x in ds_result.face_position_std[:2]]
|
|
msg.faceProb = float(sigmoid(ds_result.face_prob))
|
|
msg.leftEyeProb = float(sigmoid(ds_result.left_eye_prob))
|
|
msg.rightEyeProb = float(sigmoid(ds_result.right_eye_prob))
|
|
msg.leftBlinkProb = float(sigmoid(ds_result.left_blink_prob))
|
|
msg.rightBlinkProb = float(sigmoid(ds_result.right_blink_prob))
|
|
msg.sunglassesProb = float(sigmoid(ds_result.sunglasses_prob))
|
|
msg.occludedProb = float(sigmoid(ds_result.occluded_prob))
|
|
msg.readyProb = [float(sigmoid(x)) for x in ds_result.ready_prob]
|
|
msg.notReadyProb = [float(sigmoid(x)) for x in ds_result.not_ready_prob]
|
|
|
|
def get_driverstate_packet(model_output: np.ndarray, frame_id: int, location_ts: int, execution_time: float, gpu_execution_time: float):
|
|
model_result = ctypes.cast(model_output.ctypes.data, ctypes.POINTER(DMonitoringModelResult)).contents
|
|
msg = messaging.new_message('driverStateV2', valid=True)
|
|
ds = msg.driverStateV2
|
|
ds.frameId = frame_id
|
|
ds.modelExecutionTime = execution_time
|
|
ds.gpuExecutionTime = gpu_execution_time
|
|
ds.poorVisionProb = float(sigmoid(model_result.poor_vision_prob))
|
|
ds.wheelOnRightProb = float(sigmoid(model_result.wheel_on_right_prob))
|
|
ds.rawPredictions = model_output.tobytes() if SEND_RAW_PRED else b''
|
|
fill_driver_state(ds.leftDriverData, model_result.driver_state_lhd)
|
|
fill_driver_state(ds.rightDriverData, model_result.driver_state_rhd)
|
|
return msg
|
|
|
|
|
|
def main():
|
|
gc.disable()
|
|
setproctitle(PROCESS_NAME)
|
|
set_realtime_priority(1)
|
|
|
|
cl_context = CLContext()
|
|
model = ModelState(cl_context)
|
|
cloudlog.warning("models loaded, dmonitoringmodeld starting")
|
|
|
|
cloudlog.warning("connecting to driver stream")
|
|
vipc_client = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_DRIVER, True, cl_context)
|
|
while not vipc_client.connect(False):
|
|
time.sleep(0.1)
|
|
assert vipc_client.is_connected()
|
|
cloudlog.warning(f"connected with buffer size: {vipc_client.buffer_len}")
|
|
|
|
sm = SubMaster(["liveCalibration"])
|
|
pm = PubMaster(["driverStateV2"])
|
|
|
|
calib = np.zeros(CALIB_LEN, dtype=np.float32)
|
|
model_transform = None
|
|
|
|
while True:
|
|
buf = vipc_client.recv()
|
|
if buf is None:
|
|
continue
|
|
|
|
if model_transform is None:
|
|
cam = _os_fisheye if buf.width == _os_fisheye.width else _ar_ox_fisheye
|
|
model_transform = np.linalg.inv(np.dot(dmonitoringmodel_intrinsics, np.linalg.inv(cam.intrinsics))).astype(np.float32)
|
|
|
|
sm.update(0)
|
|
if sm.updated["liveCalibration"]:
|
|
calib[:] = np.array(sm["liveCalibration"].rpyCalib)
|
|
|
|
t1 = time.perf_counter()
|
|
model_output, gpu_execution_time = model.run(buf, calib, model_transform)
|
|
t2 = time.perf_counter()
|
|
|
|
pm.send("driverStateV2", get_driverstate_packet(model_output, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, gpu_execution_time))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|