You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
5.4 KiB
177 lines
5.4 KiB
#!/usr/bin/env python3
|
|
import os
|
|
import numpy as np
|
|
|
|
from casadi import SX, vertcat, sin, cos
|
|
|
|
from common.realtime import sec_since_boot
|
|
from selfdrive.controls.lib.drive_helpers import LAT_MPC_N as N
|
|
from selfdrive.modeld.constants import T_IDXS
|
|
|
|
if __name__ == '__main__': # generating code
|
|
from pyextra.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
|
|
else:
|
|
# from pyextra.acados_template import AcadosOcpSolverFast
|
|
from selfdrive.controls.lib.lateral_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverFast # pylint: disable=no-name-in-module, import-error
|
|
|
|
LAT_MPC_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
EXPORT_DIR = os.path.join(LAT_MPC_DIR, "c_generated_code")
|
|
JSON_FILE = "acados_ocp_lat.json"
|
|
X_DIM = 4
|
|
P_DIM = 2
|
|
|
|
def gen_lat_model():
|
|
model = AcadosModel()
|
|
model.name = 'lat'
|
|
|
|
# set up states & controls
|
|
x_ego = SX.sym('x_ego')
|
|
y_ego = SX.sym('y_ego')
|
|
psi_ego = SX.sym('psi_ego')
|
|
curv_ego = SX.sym('curv_ego')
|
|
model.x = vertcat(x_ego, y_ego, psi_ego, curv_ego)
|
|
|
|
# parameters
|
|
v_ego = SX.sym('v_ego')
|
|
rotation_radius = SX.sym('rotation_radius')
|
|
model.p = vertcat(v_ego, rotation_radius)
|
|
|
|
# controls
|
|
curv_rate = SX.sym('curv_rate')
|
|
model.u = vertcat(curv_rate)
|
|
|
|
# xdot
|
|
x_ego_dot = SX.sym('x_ego_dot')
|
|
y_ego_dot = SX.sym('y_ego_dot')
|
|
psi_ego_dot = SX.sym('psi_ego_dot')
|
|
curv_ego_dot = SX.sym('curv_ego_dot')
|
|
|
|
model.xdot = vertcat(x_ego_dot, y_ego_dot, psi_ego_dot, curv_ego_dot)
|
|
|
|
# dynamics model
|
|
f_expl = vertcat(v_ego * cos(psi_ego) - rotation_radius * sin(psi_ego) * (v_ego * curv_ego),
|
|
v_ego * sin(psi_ego) + rotation_radius * cos(psi_ego) * (v_ego * curv_ego),
|
|
v_ego * curv_ego,
|
|
curv_rate)
|
|
model.f_impl_expr = model.xdot - f_expl
|
|
model.f_expl_expr = f_expl
|
|
return model
|
|
|
|
|
|
def gen_lat_mpc_solver():
|
|
ocp = AcadosOcp()
|
|
ocp.model = gen_lat_model()
|
|
|
|
Tf = np.array(T_IDXS)[N]
|
|
|
|
# set dimensions
|
|
ocp.dims.N = N
|
|
|
|
# set cost module
|
|
ocp.cost.cost_type = 'NONLINEAR_LS'
|
|
ocp.cost.cost_type_e = 'NONLINEAR_LS'
|
|
|
|
Q = np.diag([0.0, 0.0])
|
|
QR = np.diag([0.0, 0.0, 0.0])
|
|
|
|
ocp.cost.W = QR
|
|
ocp.cost.W_e = Q
|
|
|
|
y_ego, psi_ego = ocp.model.x[1], ocp.model.x[2]
|
|
curv_rate = ocp.model.u[0]
|
|
v_ego = ocp.model.p[0]
|
|
|
|
ocp.parameter_values = np.zeros((P_DIM, ))
|
|
|
|
ocp.cost.yref = np.zeros((3, ))
|
|
ocp.cost.yref_e = np.zeros((2, ))
|
|
# TODO hacky weights to keep behavior the same
|
|
ocp.model.cost_y_expr = vertcat(y_ego,
|
|
((v_ego +5.0) * psi_ego),
|
|
((v_ego +5.0) * 4 * curv_rate))
|
|
ocp.model.cost_y_expr_e = vertcat(y_ego,
|
|
((v_ego +5.0) * psi_ego))
|
|
|
|
# set constraints
|
|
ocp.constraints.constr_type = 'BGH'
|
|
ocp.constraints.idxbx = np.array([2,3])
|
|
ocp.constraints.ubx = np.array([np.radians(90), np.radians(50)])
|
|
ocp.constraints.lbx = np.array([-np.radians(90), -np.radians(50)])
|
|
x0 = np.zeros((X_DIM,))
|
|
ocp.constraints.x0 = x0
|
|
|
|
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
|
|
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
|
|
ocp.solver_options.integrator_type = 'ERK'
|
|
ocp.solver_options.nlp_solver_type = 'SQP_RTI'
|
|
ocp.solver_options.qp_solver_iter_max = 1
|
|
ocp.solver_options.qp_solver_cond_N = 1
|
|
|
|
# set prediction horizon
|
|
ocp.solver_options.tf = Tf
|
|
ocp.solver_options.shooting_nodes = np.array(T_IDXS)[:N+1]
|
|
|
|
ocp.code_export_directory = EXPORT_DIR
|
|
return ocp
|
|
|
|
|
|
class LateralMpc():
|
|
def __init__(self, x0=np.zeros(X_DIM)):
|
|
self.solver = AcadosOcpSolverFast('lat', N, EXPORT_DIR)
|
|
self.reset(x0)
|
|
|
|
def reset(self, x0=np.zeros(X_DIM)):
|
|
self.x_sol = np.zeros((N+1, X_DIM))
|
|
self.u_sol = np.zeros((N, 1))
|
|
self.yref = np.zeros((N+1, 3))
|
|
for i in range(N):
|
|
self.solver.cost_set(i, "yref", self.yref[i])
|
|
self.solver.cost_set(N, "yref", self.yref[N][:2])
|
|
|
|
# Somehow needed for stable init
|
|
for i in range(N+1):
|
|
self.solver.set(i, 'x', np.zeros(X_DIM))
|
|
self.solver.set(i, 'p', np.zeros(P_DIM))
|
|
self.solver.constraints_set(0, "lbx", x0)
|
|
self.solver.constraints_set(0, "ubx", x0)
|
|
self.solver.solve()
|
|
self.solution_status = 0
|
|
self.solve_time = 0.0
|
|
self.cost = 0
|
|
|
|
def set_weights(self, path_weight, heading_weight, steer_rate_weight):
|
|
W = np.asfortranarray(np.diag([path_weight, heading_weight, steer_rate_weight]))
|
|
for i in range(N):
|
|
self.solver.cost_set(i, 'W', W)
|
|
#TODO hacky weights to keep behavior the same
|
|
self.solver.cost_set(N, 'W', (3/20.)*W[:2,:2])
|
|
|
|
def run(self, x0, p, y_pts, heading_pts):
|
|
x0_cp = np.copy(x0)
|
|
p_cp = np.copy(p)
|
|
self.solver.constraints_set(0, "lbx", x0_cp)
|
|
self.solver.constraints_set(0, "ubx", x0_cp)
|
|
self.yref[:,0] = y_pts
|
|
v_ego = p_cp[0]
|
|
# rotation_radius = p_cp[1]
|
|
self.yref[:,1] = heading_pts*(v_ego+5.0)
|
|
for i in range(N):
|
|
self.solver.cost_set(i, "yref", self.yref[i])
|
|
self.solver.set(i, "p", p_cp)
|
|
self.solver.set(N, "p", p_cp)
|
|
self.solver.cost_set(N, "yref", self.yref[N][:2])
|
|
|
|
t = sec_since_boot()
|
|
self.solution_status = self.solver.solve()
|
|
self.solve_time = sec_since_boot() - t
|
|
|
|
for i in range(N+1):
|
|
self.x_sol[i] = self.solver.get(i, 'x')
|
|
for i in range(N):
|
|
self.u_sol[i] = self.solver.get(i, 'u')
|
|
self.cost = self.solver.get_cost()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ocp = gen_lat_mpc_solver()
|
|
AcadosOcpSolver.generate(ocp, json_file=JSON_FILE, build=False)
|
|
|