openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

75 lines
1.9 KiB

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
from selfdrive.controls.lib.longitudinal_mpc_model import libmpc_py
libmpc = libmpc_py.libmpc
dt = 1
speeds = [6.109375, 5.9765625, 6.6367188, 7.6875, 8.7578125, 9.4375, 10.21875, 11.070312, 11.679688, 12.21875]
accelerations = [0.15405273, 0.39575195, 0.36669922, 0.29248047, 0.27856445, 0.27832031, 0.29736328, 0.22705078, 0.16003418, 0.15185547]
ts = [t * dt for t in range(len(speeds))]
# TODO: Get from actual model packet
x = 0.0
positions = []
for v in speeds:
positions.append(x)
x += v * dt
# Polyfit trajectories
x_poly = list(map(float, np.polyfit(ts, positions, 3)))
v_poly = list(map(float, np.polyfit(ts, speeds, 3)))
a_poly = list(map(float, np.polyfit(ts, accelerations, 3)))
x_poly = libmpc_py.ffi.new("double[4]", x_poly)
v_poly = libmpc_py.ffi.new("double[4]", v_poly)
a_poly = libmpc_py.ffi.new("double[4]", a_poly)
cur_state = libmpc_py.ffi.new("state_t *")
cur_state[0].x_ego = 0
cur_state[0].v_ego = 10
cur_state[0].a_ego = 0
libmpc.init(1.0, 1.0, 1.0, 1.0, 1.0)
mpc_solution = libmpc_py.ffi.new("log_t *")
libmpc.init_with_simulation(cur_state[0].v_ego)
libmpc.run_mpc(cur_state, mpc_solution, x_poly, v_poly, a_poly)
# Converge to solution
for _ in range(10):
libmpc.run_mpc(cur_state, mpc_solution, x_poly, v_poly, a_poly)
ts_sol = list(mpc_solution[0].t)
x_sol = list(mpc_solution[0].x_ego)
v_sol = list(mpc_solution[0].v_ego)
a_sol = list(mpc_solution[0].a_ego)
plt.figure()
plt.subplot(3, 1, 1)
plt.plot(ts, positions, 'k--')
plt.plot(ts_sol, x_sol)
plt.ylabel('Position [m]')
plt.xlabel('Time [s]')
plt.subplot(3, 1, 2)
plt.plot(ts, speeds, 'k--')
plt.plot(ts_sol, v_sol)
plt.xlabel('Time [s]')
plt.ylabel('Speed [m/s]')
plt.subplot(3, 1, 3)
plt.plot(ts, accelerations, 'k--')
plt.plot(ts_sol, a_sol)
plt.xlabel('Time [s]')
plt.ylabel('Acceleration [m/s^2]')
plt.show()