You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							143 lines
						
					
					
						
							4.6 KiB
						
					
					
				
			
		
		
	
	
							143 lines
						
					
					
						
							4.6 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| 
 | |
| import random
 | |
| import time
 | |
| import unittest
 | |
| import numpy as np
 | |
| 
 | |
| import cereal.messaging as messaging
 | |
| from selfdrive.test.helpers import with_processes
 | |
| from selfdrive.camerad.snapshot.visionipc import VisionIPC
 | |
| 
 | |
| # only tests for EON and TICI
 | |
| from selfdrive.hardware import EON, TICI
 | |
| 
 | |
| TEST_TIMESPAN = random.randint(60, 180) # seconds
 | |
| SKIP_FRAME_TOLERANCE = 0
 | |
| FRAME_COUNT_TOLERANCE = 1 # over the whole test time
 | |
| 
 | |
| FPS_BASELINE = 20
 | |
| CAMERAS = {
 | |
|   "frame": FPS_BASELINE,
 | |
|   "frontFrame": FPS_BASELINE // 2,
 | |
| }
 | |
| 
 | |
| if TICI:
 | |
|   CAMERAS["frontFrame"] = FPS_BASELINE
 | |
|   CAMERAS["wideFrame"] = FPS_BASELINE
 | |
| 
 | |
| class TestCamerad(unittest.TestCase):
 | |
|   @classmethod
 | |
|   def setUpClass(cls):
 | |
|     if not (EON or TICI):
 | |
|       raise unittest.SkipTest
 | |
| 
 | |
|   def _get_snapshots(self):
 | |
|     ret = None
 | |
|     start_time = time.time()
 | |
|     while time.time() - start_time < 5.0:
 | |
|       try:
 | |
|         ipc = VisionIPC()
 | |
|         pic = ipc.get()
 | |
|         del ipc
 | |
| 
 | |
|         ipc_front = VisionIPC(front=True) # need to add another for tici
 | |
|         fpic = ipc_front.get()
 | |
|         del ipc_front
 | |
| 
 | |
|         ret = pic, fpic
 | |
|         break
 | |
|       except Exception:
 | |
|         time.sleep(1)
 | |
|     return ret
 | |
| 
 | |
|   def _numpy_bgr2gray(self, im):
 | |
|     ret = np.clip(im[:,:,0] * 0.114 + im[:,:,1] * 0.587 + im[:,:,2] * 0.299, 0, 255).astype(np.uint8)
 | |
|     return ret
 | |
| 
 | |
|   def _numpy_lap(self, im):
 | |
|     ret = np.zeros(im.shape)
 | |
|     ret += -4 * im
 | |
|     ret += np.concatenate([np.zeros((im.shape[0],1)),im[:,:-1]], axis=1)
 | |
|     ret += np.concatenate([im[:,1:],np.zeros((im.shape[0],1))], axis=1)
 | |
|     ret += np.concatenate([np.zeros((1,im.shape[1])),im[:-1,:]], axis=0)
 | |
|     ret += np.concatenate([im[1:,:],np.zeros((1,im.shape[1]))], axis=0)
 | |
|     ret = np.clip(ret, 0, 255).astype(np.uint8)
 | |
|     return ret
 | |
| 
 | |
|   def _is_really_sharp(self, i, threshold=800, roi_max=np.array([8,6]), roi_xxyy=np.array([1,6,2,3])):
 | |
|     i = self._numpy_bgr2gray(i)
 | |
|     x_pitch = i.shape[1] // roi_max[0]
 | |
|     y_pitch = i.shape[0] // roi_max[1]
 | |
|     lap = self._numpy_lap(i)
 | |
|     lap_map = np.zeros((roi_max[1], roi_max[0]))
 | |
|     for r in range(lap_map.shape[0]):
 | |
|       for c in range(lap_map.shape[1]):
 | |
|         selected_lap = lap[r*y_pitch:(r+1)*y_pitch, c*x_pitch:(c+1)*x_pitch]
 | |
|         lap_map[r][c] = 5*selected_lap.var() + selected_lap.max()
 | |
|     print(lap_map[roi_xxyy[2]:roi_xxyy[3]+1,roi_xxyy[0]:roi_xxyy[1]+1])
 | |
|     if (lap_map[roi_xxyy[2]:roi_xxyy[3]+1,roi_xxyy[0]:roi_xxyy[1]+1] > threshold).sum() > \
 | |
|           (roi_xxyy[1]+1-roi_xxyy[0]) * (roi_xxyy[3]+1-roi_xxyy[2]) * 0.9:
 | |
|       return True
 | |
|     else:
 | |
|       return False
 | |
| 
 | |
|   def _is_exposure_okay(self, i, med_ex=np.array([0.2,0.4]), mean_ex=np.array([0.2,0.6])):
 | |
|     i = self._numpy_bgr2gray(i)
 | |
|     i_median = np.median(i) / 256
 | |
|     i_mean = np.mean(i) / 256
 | |
|     print([i_median, i_mean])
 | |
|     return med_ex[0] < i_median < med_ex[1] and mean_ex[0] < i_mean < mean_ex[1]
 | |
| 
 | |
|   @with_processes(['camerad'])
 | |
|   def test_camera_operation(self):
 | |
|     print("checking image outputs")
 | |
|     if EON:
 | |
|       # run checks similar to prov
 | |
|       time.sleep(15) # wait for startup and AF
 | |
|       pic, fpic = self._get_snapshots()
 | |
|       self.assertTrue(self._is_really_sharp(pic))
 | |
|       self.assertTrue(self._is_exposure_okay(pic))
 | |
|       self.assertTrue(self._is_exposure_okay(fpic))
 | |
| 
 | |
|       time.sleep(30)
 | |
|       # check again for consistency
 | |
|       pic, fpic = self._get_snapshots()
 | |
|       self.assertTrue(self._is_really_sharp(pic))
 | |
|       self.assertTrue(self._is_exposure_okay(pic))
 | |
|       self.assertTrue(self._is_exposure_okay(fpic))
 | |
|     elif TICI:
 | |
|       raise unittest.SkipTest # TBD
 | |
|     else:
 | |
|       raise unittest.SkipTest
 | |
| 
 | |
|   @with_processes(['camerad'])
 | |
|   def test_frame_packets(self):
 | |
|     print("checking frame pkts continuity")
 | |
|     print(TEST_TIMESPAN)
 | |
| 
 | |
|     sm = messaging.SubMaster([socket_name for socket_name in CAMERAS])
 | |
| 
 | |
|     last_frame_id = dict.fromkeys(CAMERAS, None)
 | |
|     start_frame_id = dict.fromkeys(CAMERAS, None)
 | |
|     start_time_milli = int(round(time.time() * 1000))
 | |
|     while int(round(time.time() * 1000)) - start_time_milli < (TEST_TIMESPAN+1) * 1000:
 | |
|       sm.update()
 | |
| 
 | |
|       for camera in CAMERAS:
 | |
|         if sm.updated[camera]:
 | |
|           if start_frame_id[camera] is None:
 | |
|             start_frame_id[camera] = last_frame_id[camera] = sm[camera].frameId
 | |
|             continue
 | |
|           dfid = sm[camera].frameId - last_frame_id[camera]
 | |
|           self.assertTrue(abs(dfid - 1) <= SKIP_FRAME_TOLERANCE)
 | |
|           last_frame_id[camera] = sm[camera].frameId
 | |
| 
 | |
|       time.sleep(0.01)
 | |
| 
 | |
|     for camera in CAMERAS:
 | |
|       print(camera, (last_frame_id[camera] - start_frame_id[camera]))
 | |
|       self.assertTrue(abs((last_frame_id[camera] - start_frame_id[camera]) - TEST_TIMESPAN*CAMERAS[camera]) <= FRAME_COUNT_TOLERANCE)
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   unittest.main()
 | |
| 
 |