openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

39 lines
1.9 KiB

import math
from tinygrad import dtypes
from tinygrad.nn.optim import Optimizer
from extra.lr_scheduler import LR_Scheduler
# https://github.com/mlcommons/training/blob/e237206991d10449d9675d95606459a3cb6c21ad/image_classification/tensorflow2/lars_util.py
class PolynomialDecayWithWarmup(LR_Scheduler):
def __init__(self, optimizer: Optimizer, initial_lr, end_lr, train_steps, warmup, power=2):
super().__init__(optimizer)
self.epoch_counter = self.epoch_counter.cast(dtypes.float32)
assert train_steps > 0 and warmup > 0
self.warmup = min(warmup, train_steps)
self.initial_lr, self.end_lr, self.epochs, self.power = initial_lr, end_lr, train_steps, power
# set lr for first warmup step
self.optimizer.lr.assign(self.get_lr()).realize()
def get_lr(self):
# LR is 0 on the first step, matching the reference.
warmup_lr = (self.epoch_counter * (1.0 / self.warmup)) * self.initial_lr
x = (1 - (self.epoch_counter - self.warmup) / (self.epochs - self.warmup + 1))
return (self.epoch_counter <= self.warmup).where(warmup_lr, (self.initial_lr - self.end_lr) * x ** self.power + self.end_lr).cast(self.optimizer.lr.dtype)
class CosineAnnealingLRWithWarmup(LR_Scheduler):
def __init__(self, optimizer:Optimizer, base_lr, end_lr, warmup_steps:int, decay_steps:int):
assert warmup_steps > 0 and decay_steps > 0
super().__init__(optimizer)
self.base_lr = base_lr
self.end_lr = end_lr
self.warmup_steps = warmup_steps
self.decay_steps = decay_steps
# set lr for first warmup step
self.optimizer.lr.assign(self.get_lr()).realize()
def get_lr(self):
warmup_lr = ((self.epoch_counter+1) / self.warmup_steps) * self.base_lr
decay_lr = self.end_lr + 0.5 * (self.base_lr-self.end_lr) * (1 + (((self.epoch_counter+1-self.warmup_steps)/self.decay_steps) * math.pi).cos())
return (self.epoch_counter < self.warmup_steps).where(warmup_lr, decay_lr).cast(self.optimizer.lr.dtype)