You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							216 lines
						
					
					
						
							7.9 KiB
						
					
					
				
			
		
		
	
	
							216 lines
						
					
					
						
							7.9 KiB
						
					
					
				| /*
 | |
|  * Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
 | |
|  * Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
 | |
|  * Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
 | |
|  * Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
 | |
|  *
 | |
|  * This file is part of acados.
 | |
|  *
 | |
|  * The 2-Clause BSD License
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer in the documentation
 | |
|  * and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | |
|  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
|  * POSSIBILITY OF SUCH DAMAGE.;
 | |
|  */
 | |
| 
 | |
| 
 | |
| // standard
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| // acados
 | |
| #include "acados/utils/print.h"
 | |
| #include "acados/utils/math.h"
 | |
| #include "acados_c/ocp_nlp_interface.h"
 | |
| #include "acados_c/external_function_interface.h"
 | |
| #include "acados_solver_{{ model.name }}.h"
 | |
| 
 | |
| #define NX     {{ model.name | upper }}_NX
 | |
| #define NZ     {{ model.name | upper }}_NZ
 | |
| #define NU     {{ model.name | upper }}_NU
 | |
| #define NP     {{ model.name | upper }}_NP
 | |
| #define NBX    {{ model.name | upper }}_NBX
 | |
| #define NBX0   {{ model.name | upper }}_NBX0
 | |
| #define NBU    {{ model.name | upper }}_NBU
 | |
| #define NSBX   {{ model.name | upper }}_NSBX
 | |
| #define NSBU   {{ model.name | upper }}_NSBU
 | |
| #define NSH    {{ model.name | upper }}_NSH
 | |
| #define NSG    {{ model.name | upper }}_NSG
 | |
| #define NSPHI  {{ model.name | upper }}_NSPHI
 | |
| #define NSHN   {{ model.name | upper }}_NSHN
 | |
| #define NSGN   {{ model.name | upper }}_NSGN
 | |
| #define NSPHIN {{ model.name | upper }}_NSPHIN
 | |
| #define NSBXN  {{ model.name | upper }}_NSBXN
 | |
| #define NS     {{ model.name | upper }}_NS
 | |
| #define NSN    {{ model.name | upper }}_NSN
 | |
| #define NG     {{ model.name | upper }}_NG
 | |
| #define NBXN   {{ model.name | upper }}_NBXN
 | |
| #define NGN    {{ model.name | upper }}_NGN
 | |
| #define NY0    {{ model.name | upper }}_NY0
 | |
| #define NY     {{ model.name | upper }}_NY
 | |
| #define NYN    {{ model.name | upper }}_NYN
 | |
| #define NH     {{ model.name | upper }}_NH
 | |
| #define NPHI   {{ model.name | upper }}_NPHI
 | |
| #define NHN    {{ model.name | upper }}_NHN
 | |
| #define NPHIN  {{ model.name | upper }}_NPHIN
 | |
| #define NR     {{ model.name | upper }}_NR
 | |
| 
 | |
| 
 | |
| int main()
 | |
| {
 | |
| 
 | |
|     {{ model.name }}_solver_capsule *acados_ocp_capsule = {{ model.name }}_acados_create_capsule();
 | |
|     // there is an opportunity to change the number of shooting intervals in C without new code generation
 | |
|     int N = {{ model.name | upper }}_N;
 | |
|     // allocate the array and fill it accordingly
 | |
|     double* new_time_steps = NULL;
 | |
|     int status = {{ model.name }}_acados_create_with_discretization(acados_ocp_capsule, N, new_time_steps);
 | |
| 
 | |
|     if (status)
 | |
|     {
 | |
|         printf("{{ model.name }}_acados_create() returned status %d. Exiting.\n", status);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     ocp_nlp_config *nlp_config = {{ model.name }}_acados_get_nlp_config(acados_ocp_capsule);
 | |
|     ocp_nlp_dims *nlp_dims = {{ model.name }}_acados_get_nlp_dims(acados_ocp_capsule);
 | |
|     ocp_nlp_in *nlp_in = {{ model.name }}_acados_get_nlp_in(acados_ocp_capsule);
 | |
|     ocp_nlp_out *nlp_out = {{ model.name }}_acados_get_nlp_out(acados_ocp_capsule);
 | |
|     ocp_nlp_solver *nlp_solver = {{ model.name }}_acados_get_nlp_solver(acados_ocp_capsule);
 | |
|     void *nlp_opts = {{ model.name }}_acados_get_nlp_opts(acados_ocp_capsule);
 | |
| 
 | |
|     // initial condition
 | |
|     int idxbx0[NBX0];
 | |
|     {%- for i in range(end=dims.nbx_0) %}
 | |
|     idxbx0[{{ i }}] = {{ constraints.idxbx_0[i] }};
 | |
|     {%- endfor %}
 | |
| 
 | |
|     double lbx0[NBX0];
 | |
|     double ubx0[NBX0];
 | |
|     {%- for i in range(end=dims.nbx_0) %}
 | |
|     lbx0[{{ i }}] = {{ constraints.lbx_0[i] }};
 | |
|     ubx0[{{ i }}] = {{ constraints.ubx_0[i] }};
 | |
|     {%- endfor %}
 | |
| 
 | |
|     ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "idxbx", idxbx0);
 | |
|     ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "lbx", lbx0);
 | |
|     ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "ubx", ubx0);
 | |
| 
 | |
|     // initialization for state values
 | |
|     double x_init[NX];
 | |
|     {%- for i in range(end=dims.nx) %}
 | |
|     x_init[{{ i }}] = 0.0;
 | |
|     {%- endfor %}
 | |
| 
 | |
|     // initial value for control input
 | |
|     double u0[NU];
 | |
|     {%- for i in range(end=dims.nu) %}
 | |
|     u0[{{ i }}] = 0.0;
 | |
|     {%- endfor %}
 | |
| 
 | |
| 
 | |
|   {%- if dims.np > 0 %}
 | |
|     // set parameters
 | |
|     double p[NP];
 | |
|     {%- for item in parameter_values %}
 | |
|     p[{{ loop.index0 }}] = {{ item }};
 | |
|     {%- endfor %}
 | |
| 
 | |
|     for (int ii = 0; ii <= N; ii++)
 | |
|     {
 | |
|         {{ model.name }}_acados_update_params(acados_ocp_capsule, ii, p, NP);
 | |
|     }
 | |
|   {% endif %}{# if np > 0 #}
 | |
| 
 | |
|     // prepare evaluation
 | |
|     int NTIMINGS = 1;
 | |
|     double min_time = 1e12;
 | |
|     double kkt_norm_inf;
 | |
|     double elapsed_time;
 | |
|     int sqp_iter;
 | |
| 
 | |
|     double xtraj[NX * (N+1)];
 | |
|     double utraj[NU * N];
 | |
| 
 | |
| 
 | |
|     // solve ocp in loop
 | |
|     int rti_phase = 0;
 | |
| 
 | |
|     for (int ii = 0; ii < NTIMINGS; ii++)
 | |
|     {
 | |
|         // initialize solution
 | |
|         for (int i = 0; i < N; i++)
 | |
|         {
 | |
|             ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "x", x_init);
 | |
|             ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "u", u0);
 | |
|         }
 | |
|         ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, N, "x", x_init);
 | |
|         ocp_nlp_solver_opts_set(nlp_config, nlp_opts, "rti_phase", &rti_phase);
 | |
|         status = {{ model.name }}_acados_solve(acados_ocp_capsule);
 | |
|         ocp_nlp_get(nlp_config, nlp_solver, "time_tot", &elapsed_time);
 | |
|         min_time = MIN(elapsed_time, min_time);
 | |
|     }
 | |
| 
 | |
|     /* print solution and statistics */
 | |
|     for (int ii = 0; ii <= nlp_dims->N; ii++)
 | |
|         ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "x", &xtraj[ii*NX]);
 | |
|     for (int ii = 0; ii < nlp_dims->N; ii++)
 | |
|         ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "u", &utraj[ii*NU]);
 | |
| 
 | |
|     printf("\n--- xtraj ---\n");
 | |
|     d_print_exp_tran_mat( NX, N+1, xtraj, NX);
 | |
|     printf("\n--- utraj ---\n");
 | |
|     d_print_exp_tran_mat( NU, N, utraj, NU );
 | |
|     // ocp_nlp_out_print(nlp_solver->dims, nlp_out);
 | |
| 
 | |
|     printf("\nsolved ocp %d times, solution printed above\n\n", NTIMINGS);
 | |
| 
 | |
|     if (status == ACADOS_SUCCESS)
 | |
|     {
 | |
|         printf("{{ model.name }}_acados_solve(): SUCCESS!\n");
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         printf("{{ model.name }}_acados_solve() failed with status %d.\n", status);
 | |
|     }
 | |
| 
 | |
|     // get solution
 | |
|     ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, 0, "kkt_norm_inf", &kkt_norm_inf);
 | |
|     ocp_nlp_get(nlp_config, nlp_solver, "sqp_iter", &sqp_iter);
 | |
| 
 | |
|     {{ model.name }}_acados_print_stats(acados_ocp_capsule);
 | |
| 
 | |
|     printf("\nSolver info:\n");
 | |
|     printf(" SQP iterations %2d\n minimum time for %d solve %f [ms]\n KKT %e\n",
 | |
|            sqp_iter, NTIMINGS, min_time*1000, kkt_norm_inf);
 | |
| 
 | |
|     // free solver
 | |
|     status = {{ model.name }}_acados_free(acados_ocp_capsule);
 | |
|     if (status) {
 | |
|         printf("{{ model.name }}_acados_free() returned status %d. \n", status);
 | |
|     }
 | |
|     // free solver capsule
 | |
|     status = {{ model.name }}_acados_free_capsule(acados_ocp_capsule);
 | |
|     if (status) {
 | |
|         printf("{{ model.name }}_acados_free_capsule() returned status %d. \n", status);
 | |
|     }
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 |