openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

354 lines
8.8 KiB

// IRQs: USART1, USART2, USART3, UART5
#define FIFO_SIZE 0x400U
typedef struct uart_ring {
volatile uint16_t w_ptr_tx;
volatile uint16_t r_ptr_tx;
uint8_t elems_tx[FIFO_SIZE];
volatile uint16_t w_ptr_rx;
volatile uint16_t r_ptr_rx;
uint8_t elems_rx[FIFO_SIZE];
USART_TypeDef *uart;
void (*callback)(struct uart_ring*);
} uart_ring;
void uart_init(USART_TypeDef *u, int baud);
bool getc(uart_ring *q, char *elem);
bool putc(uart_ring *q, char elem);
void puts(const char *a);
void puth(unsigned int i);
void hexdump(const void *a, int l);
// ***************************** serial port queues *****************************
// esp = USART1
uart_ring esp_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART1,
.callback = NULL};
// lin1, K-LINE = UART5
// lin2, L-LINE = USART3
uart_ring lin1_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = UART5,
.callback = NULL};
uart_ring lin2_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART3,
.callback = NULL};
// debug = USART2
void debug_ring_callback(uart_ring *ring);
uart_ring debug_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART2,
.callback = debug_ring_callback};
uart_ring *get_ring_by_number(int a) {
uart_ring *ring = NULL;
switch(a) {
case 0:
ring = &debug_ring;
break;
case 1:
ring = &esp_ring;
break;
case 2:
ring = &lin1_ring;
break;
case 3:
ring = &lin2_ring;
break;
default:
ring = NULL;
break;
}
return ring;
}
// ***************************** serial port *****************************
void uart_ring_process(uart_ring *q) {
enter_critical_section();
// TODO: check if external serial is connected
int sr = q->uart->SR;
if (q->w_ptr_tx != q->r_ptr_tx) {
if ((sr & USART_SR_TXE) != 0) {
q->uart->DR = q->elems_tx[q->r_ptr_tx];
q->r_ptr_tx = (q->r_ptr_tx + 1U) % FIFO_SIZE;
}
// there could be more to send
q->uart->CR1 |= USART_CR1_TXEIE;
} else {
// nothing to send
q->uart->CR1 &= ~USART_CR1_TXEIE;
}
if ((sr & USART_SR_RXNE) || (sr & USART_SR_ORE)) {
uint8_t c = q->uart->DR; // TODO: can drop packets
if (q != &esp_ring) {
uint16_t next_w_ptr = (q->w_ptr_rx + 1U) % FIFO_SIZE;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = c;
q->w_ptr_rx = next_w_ptr;
if (q->callback != NULL) {
q->callback(q);
}
}
}
}
if ((sr & USART_SR_ORE) != 0) {
// set dropped packet flag?
}
exit_critical_section();
}
// interrupt boilerplate
void USART1_IRQHandler(void) { uart_ring_process(&esp_ring); }
void USART2_IRQHandler(void) { uart_ring_process(&debug_ring); }
void USART3_IRQHandler(void) { uart_ring_process(&lin2_ring); }
void UART5_IRQHandler(void) { uart_ring_process(&lin1_ring); }
bool getc(uart_ring *q, char *elem) {
bool ret = false;
enter_critical_section();
if (q->w_ptr_rx != q->r_ptr_rx) {
if (elem != NULL) *elem = q->elems_rx[q->r_ptr_rx];
q->r_ptr_rx = (q->r_ptr_rx + 1U) % FIFO_SIZE;
ret = true;
}
exit_critical_section();
return ret;
}
bool injectc(uart_ring *q, char elem) {
int ret = false;
uint16_t next_w_ptr;
enter_critical_section();
next_w_ptr = (q->w_ptr_rx + 1U) % FIFO_SIZE;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = elem;
q->w_ptr_rx = next_w_ptr;
ret = true;
}
exit_critical_section();
return ret;
}
bool putc(uart_ring *q, char elem) {
bool ret = false;
uint16_t next_w_ptr;
enter_critical_section();
next_w_ptr = (q->w_ptr_tx + 1U) % FIFO_SIZE;
if (next_w_ptr != q->r_ptr_tx) {
q->elems_tx[q->w_ptr_tx] = elem;
q->w_ptr_tx = next_w_ptr;
ret = true;
}
exit_critical_section();
uart_ring_process(q);
return ret;
}
void uart_flush(uart_ring *q) {
while (q->w_ptr_tx != q->r_ptr_tx) {
__WFI();
}
}
void uart_flush_sync(uart_ring *q) {
// empty the TX buffer
while (q->w_ptr_tx != q->r_ptr_tx) {
uart_ring_process(q);
}
}
void uart_send_break(uart_ring *u) {
while ((u->uart->CR1 & USART_CR1_SBK) != 0);
u->uart->CR1 |= USART_CR1_SBK;
}
void clear_uart_buff(uart_ring *q) {
enter_critical_section();
q->w_ptr_tx = 0;
q->r_ptr_tx = 0;
q->w_ptr_rx = 0;
q->r_ptr_rx = 0;
exit_critical_section();
}
// ***************************** start UART code *****************************
#define __DIV(_PCLK_, _BAUD_) (((_PCLK_) * 25U) / (4U * (_BAUD_)))
#define __DIVMANT(_PCLK_, _BAUD_) (__DIV((_PCLK_), (_BAUD_)) / 100U)
#define __DIVFRAQ(_PCLK_, _BAUD_) ((((__DIV((_PCLK_), (_BAUD_)) - (__DIVMANT((_PCLK_), (_BAUD_)) * 100U)) * 16U) + 50U) / 100U)
#define __USART_BRR(_PCLK_, _BAUD_) ((__DIVMANT((_PCLK_), (_BAUD_)) << 4) | (__DIVFRAQ((_PCLK_), (_BAUD_)) & 0x0FU))
void uart_set_baud(USART_TypeDef *u, unsigned int baud) {
if (u == USART1) {
// USART1 is on APB2
u->BRR = __USART_BRR(48000000U, baud);
} else {
u->BRR = __USART_BRR(24000000U, baud);
}
}
#define USART1_DMA_LEN 0x20
char usart1_dma[USART1_DMA_LEN];
void uart_dma_drain(void) {
uart_ring *q = &esp_ring;
enter_critical_section();
if ((DMA2->HISR & DMA_HISR_TCIF5) || (DMA2->HISR & DMA_HISR_HTIF5) || (DMA2_Stream5->NDTR != USART1_DMA_LEN)) {
// disable DMA
q->uart->CR3 &= ~USART_CR3_DMAR;
DMA2_Stream5->CR &= ~DMA_SxCR_EN;
while ((DMA2_Stream5->CR & DMA_SxCR_EN) != 0);
unsigned int i;
for (i = 0; i < (USART1_DMA_LEN - DMA2_Stream5->NDTR); i++) {
char c = usart1_dma[i];
uint16_t next_w_ptr = (q->w_ptr_rx + 1U) % FIFO_SIZE;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = c;
q->w_ptr_rx = next_w_ptr;
}
}
// reset DMA len
DMA2_Stream5->NDTR = USART1_DMA_LEN;
// clear interrupts
DMA2->HIFCR = DMA_HIFCR_CTCIF5 | DMA_HIFCR_CHTIF5;
//DMA2->HIFCR = DMA_HIFCR_CTEIF5 | DMA_HIFCR_CDMEIF5 | DMA_HIFCR_CFEIF5;
// enable DMA
DMA2_Stream5->CR |= DMA_SxCR_EN;
q->uart->CR3 |= USART_CR3_DMAR;
}
exit_critical_section();
}
void DMA2_Stream5_IRQHandler(void) {
//set_led(LED_BLUE, 1);
uart_dma_drain();
//set_led(LED_BLUE, 0);
}
void uart_init(USART_TypeDef *u, int baud) {
// enable uart and tx+rx mode
u->CR1 = USART_CR1_UE;
uart_set_baud(u, baud);
u->CR1 |= USART_CR1_TE | USART_CR1_RE;
//u->CR2 = USART_CR2_STOP_0 | USART_CR2_STOP_1;
//u->CR2 = USART_CR2_STOP_0;
// ** UART is ready to work **
// enable interrupts
if (u != USART1) {
u->CR1 |= USART_CR1_RXNEIE;
}
if (u == USART1) {
// DMA2, stream 2, channel 3
DMA2_Stream5->M0AR = (uint32_t)usart1_dma;
DMA2_Stream5->NDTR = USART1_DMA_LEN;
DMA2_Stream5->PAR = (uint32_t)&(USART1->DR);
// channel4, increment memory, periph -> memory, enable
DMA2_Stream5->CR = DMA_SxCR_CHSEL_2 | DMA_SxCR_MINC | DMA_SxCR_HTIE | DMA_SxCR_TCIE | DMA_SxCR_EN;
// this one uses DMA receiver
u->CR3 = USART_CR3_DMAR;
NVIC_EnableIRQ(DMA2_Stream5_IRQn);
NVIC_EnableIRQ(USART1_IRQn);
} else if (u == USART2) {
NVIC_EnableIRQ(USART2_IRQn);
} else if (u == USART3) {
NVIC_EnableIRQ(USART3_IRQn);
} else if (u == UART5) {
NVIC_EnableIRQ(UART5_IRQn);
} else {
// USART type undefined, skip
}
}
void putch(const char a) {
if (has_external_debug_serial) {
/*while ((debug_ring.uart->SR & USART_SR_TXE) == 0);
debug_ring.uart->DR = a;*/
// assuming debugging is important if there's external serial connected
while (!putc(&debug_ring, a));
//putc(&debug_ring, a);
} else {
// misra-c2012-17.7: serial debug function, ok to ignore output
(void)injectc(&debug_ring, a);
}
}
void puts(const char *a) {
for (const char *in = a; *in; in++) {
if (*in == '\n') putch('\r');
putch(*in);
}
}
void putui(uint32_t i) {
uint32_t i_copy = i;
char str[11];
uint8_t idx = 10;
str[idx] = '\0';
idx--;
do {
str[idx] = (i_copy % 10U) + 0x30U;
idx--;
i_copy /= 10;
} while (i_copy != 0U);
puts(str + idx + 1U);
}
void puth(unsigned int i) {
char c[] = "0123456789abcdef";
for (int pos = 28; pos != -4; pos -= 4) {
putch(c[(i >> (unsigned int)(pos)) & 0xFU]);
}
}
void puth2(unsigned int i) {
char c[] = "0123456789abcdef";
for (int pos = 4; pos != -4; pos -= 4) {
putch(c[(i >> (unsigned int)(pos)) & 0xFU]);
}
}
void hexdump(const void *a, int l) {
for (int i=0; i < l; i++) {
if ((i != 0) && ((i & 0xf) == 0)) puts("\n");
puth2(((const unsigned char*)a)[i]);
puts(" ");
}
puts("\n");
}