openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

768 lines
21 KiB

//#define EON
#include "config.h"
#include "obj/gitversion.h"
// ********************* includes *********************
#include "libc.h"
#include "provision.h"
#include "drivers/llcan.h"
#include "drivers/llgpio.h"
#include "gpio.h"
#include "drivers/uart.h"
#include "drivers/adc.h"
#include "drivers/usb.h"
#include "drivers/gmlan_alt.h"
#include "drivers/timer.h"
#include "drivers/clock.h"
#ifndef EON
#include "drivers/spi.h"
#endif
#include "power_saving.h"
#include "safety.h"
#include "drivers/can.h"
// ********************* serial debugging *********************
void debug_ring_callback(uart_ring *ring) {
char rcv;
while (getc(ring, &rcv)) {
(void)putc(ring, rcv); // misra-c2012-17.7: cast to void is ok: debug function
// jump to DFU flash
if (rcv == 'z') {
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
}
// normal reset
if (rcv == 'x') {
NVIC_SystemReset();
}
// enable CDP mode
if (rcv == 'C') {
puts("switching USB to CDP mode\n");
set_usb_power_mode(USB_POWER_CDP);
}
if (rcv == 'c') {
puts("switching USB to client mode\n");
set_usb_power_mode(USB_POWER_CLIENT);
}
if (rcv == 'D') {
puts("switching USB to DCP mode\n");
set_usb_power_mode(USB_POWER_DCP);
}
}
}
// ***************************** started logic *****************************
bool is_gpio_started(void) {
// ignition is on PA1
return (GPIOA->IDR & (1U << 1)) == 0;
}
// cppcheck-suppress unusedFunction ; used in headers not included in cppcheck
void EXTI1_IRQHandler(void) {
volatile unsigned int pr = EXTI->PR & (1U << 1);
if ((pr & (1U << 1)) != 0U) {
#ifdef DEBUG
puts("got started interrupt\n");
#endif
// jenky debounce
delay(100000);
// set power savings mode here
int power_save_state = is_gpio_started() ? POWER_SAVE_STATUS_DISABLED : POWER_SAVE_STATUS_ENABLED;
set_power_save_state(power_save_state);
EXTI->PR = (1U << 1);
}
}
void started_interrupt_init(void) {
SYSCFG->EXTICR[1] = SYSCFG_EXTICR1_EXTI1_PA;
EXTI->IMR |= (1U << 1);
EXTI->RTSR |= (1U << 1);
EXTI->FTSR |= (1U << 1);
NVIC_EnableIRQ(EXTI1_IRQn);
}
// ***************************** USB port *****************************
int get_health_pkt(void *dat) {
struct __attribute__((packed)) {
uint32_t voltage_pkt;
uint32_t current_pkt;
uint8_t started_pkt;
uint8_t controls_allowed_pkt;
uint8_t gas_interceptor_detected_pkt;
uint32_t can_send_errs_pkt;
uint32_t can_fwd_errs_pkt;
uint32_t gmlan_send_errs_pkt;
} *health = dat;
//Voltage will be measured in mv. 5000 = 5V
uint32_t voltage = adc_get(ADCCHAN_VOLTAGE);
// REVC has a 10, 1 (1/11) voltage divider
// Here is the calculation for the scale (s)
// ADCV = VIN_S * (1/11) * (4095/3.3)
// RETVAL = ADCV * s = VIN_S*1000
// s = 1000/((4095/3.3)*(1/11)) = 8.8623046875
// Avoid needing floating point math
health->voltage_pkt = (voltage * 8862U) / 1000U;
health->current_pkt = adc_get(ADCCHAN_CURRENT);
int safety_ignition = safety_ignition_hook();
if (safety_ignition < 0) {
//Use the GPIO pin to determine ignition
health->started_pkt = is_gpio_started();
} else {
//Current safety hooks want to determine ignition (ex: GM)
health->started_pkt = safety_ignition;
}
health->controls_allowed_pkt = controls_allowed;
health->gas_interceptor_detected_pkt = gas_interceptor_detected;
health->can_send_errs_pkt = can_send_errs;
health->can_fwd_errs_pkt = can_fwd_errs;
health->gmlan_send_errs_pkt = gmlan_send_errs;
return sizeof(*health);
}
int usb_cb_ep1_in(void *usbdata, int len, bool hardwired) {
UNUSED(hardwired);
CAN_FIFOMailBox_TypeDef *reply = (CAN_FIFOMailBox_TypeDef *)usbdata;
int ilen = 0;
while (ilen < MIN(len/0x10, 4) && can_pop(&can_rx_q, &reply[ilen])) {
ilen++;
}
return ilen*0x10;
}
// send on serial, first byte to select the ring
void usb_cb_ep2_out(void *usbdata, int len, bool hardwired) {
UNUSED(hardwired);
uint8_t *usbdata8 = (uint8_t *)usbdata;
uart_ring *ur = get_ring_by_number(usbdata8[0]);
if ((len != 0) && (ur != NULL)) {
if ((usbdata8[0] < 2U) || safety_tx_lin_hook(usbdata8[0] - 2U, usbdata8 + 1, len - 1)) {
for (int i = 1; i < len; i++) {
while (!putc(ur, usbdata8[i])) {
// wait
}
}
}
}
}
// send on CAN
void usb_cb_ep3_out(void *usbdata, int len, bool hardwired) {
UNUSED(hardwired);
int dpkt = 0;
uint32_t *d32 = (uint32_t *)usbdata;
for (dpkt = 0; dpkt < (len / 4); dpkt += 4) {
CAN_FIFOMailBox_TypeDef to_push;
to_push.RDHR = d32[dpkt + 3];
to_push.RDLR = d32[dpkt + 2];
to_push.RDTR = d32[dpkt + 1];
to_push.RIR = d32[dpkt];
uint8_t bus_number = (to_push.RDTR >> 4) & CAN_BUS_NUM_MASK;
can_send(&to_push, bus_number);
}
}
bool is_enumerated = 0;
void usb_cb_enumeration_complete() {
puts("USB enumeration complete\n");
is_enumerated = 1;
}
int usb_cb_control_msg(USB_Setup_TypeDef *setup, uint8_t *resp, bool hardwired) {
unsigned int resp_len = 0;
uart_ring *ur = NULL;
int i;
switch (setup->b.bRequest) {
// **** 0xc0: get CAN debug info
case 0xc0:
puts("can tx: "); puth(can_tx_cnt);
puts(" txd: "); puth(can_txd_cnt);
puts(" rx: "); puth(can_rx_cnt);
puts(" err: "); puth(can_err_cnt);
puts("\n");
break;
// **** 0xc1: is grey panda
case 0xc1:
resp[0] = is_grey_panda;
resp_len = 1;
break;
// **** 0xd0: fetch serial number
case 0xd0:
// addresses are OTP
if (setup->b.wValue.w == 1U) {
(void)memcpy(resp, (uint8_t *)0x1fff79c0, 0x10);
resp_len = 0x10;
} else {
get_provision_chunk(resp);
resp_len = PROVISION_CHUNK_LEN;
}
break;
// **** 0xd1: enter bootloader mode
case 0xd1:
// this allows reflashing of the bootstub
// so it's blocked over wifi
switch (setup->b.wValue.w) {
case 0:
if (hardwired) {
puts("-> entering bootloader\n");
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
}
break;
case 1:
puts("-> entering softloader\n");
enter_bootloader_mode = ENTER_SOFTLOADER_MAGIC;
NVIC_SystemReset();
break;
default:
puts("Bootloader mode invalid\n");
break;
}
break;
// **** 0xd2: get health packet
case 0xd2:
resp_len = get_health_pkt(resp);
break;
// **** 0xd6: get version
case 0xd6:
COMPILE_TIME_ASSERT(sizeof(gitversion) <= MAX_RESP_LEN);
(void)memcpy(resp, gitversion, sizeof(gitversion));
resp_len = sizeof(gitversion) - 1U;
break;
// **** 0xd8: reset ST
case 0xd8:
NVIC_SystemReset();
break;
// **** 0xd9: set ESP power
case 0xd9:
if (setup->b.wValue.w == 1U) {
set_esp_mode(ESP_ENABLED);
} else if (setup->b.wValue.w == 2U) {
set_esp_mode(ESP_BOOTMODE);
} else {
set_esp_mode(ESP_DISABLED);
}
break;
// **** 0xda: reset ESP, with optional boot mode
case 0xda:
set_esp_mode(ESP_DISABLED);
delay(1000000);
if (setup->b.wValue.w == 1U) {
set_esp_mode(ESP_BOOTMODE);
} else {
set_esp_mode(ESP_ENABLED);
}
delay(1000000);
set_esp_mode(ESP_ENABLED);
break;
// **** 0xdb: set GMLAN multiplexing mode
case 0xdb:
if (setup->b.wValue.w == 1U) {
// GMLAN ON
if (setup->b.wIndex.w == 1U) {
can_set_gmlan(1);
} else if (setup->b.wIndex.w == 2U) {
can_set_gmlan(2);
} else {
puts("Invalid bus num for GMLAN CAN set\n");
}
} else {
can_set_gmlan(-1);
}
break;
// **** 0xdc: set safety mode
case 0xdc:
// this is the only way to leave silent mode
// and it's blocked over WiFi
// Allow ELM security mode to be set over wifi.
if (hardwired || (setup->b.wValue.w == SAFETY_NOOUTPUT) || (setup->b.wValue.w == SAFETY_ELM327)) {
int err = safety_set_mode(setup->b.wValue.w, (int16_t)setup->b.wIndex.w);
if (err == -1) {
puts("Error: safety set mode failed\n");
} else {
#ifndef EON
// always LIVE on EON
switch (setup->b.wValue.w) {
case SAFETY_NOOUTPUT:
can_silent = ALL_CAN_SILENT;
break;
case SAFETY_ELM327:
can_silent = ALL_CAN_BUT_MAIN_SILENT;
break;
default:
can_silent = ALL_CAN_LIVE;
break;
}
#endif
if (safety_ignition_hook() != -1) {
// if the ignition hook depends on something other than the started GPIO
// we have to disable power savings (fix for GM and Tesla)
set_power_save_state(POWER_SAVE_STATUS_DISABLED);
} else {
// power mode is already POWER_SAVE_STATUS_DISABLED and CAN TXs are active
}
can_init_all();
}
}
break;
// **** 0xdd: enable can forwarding
case 0xdd:
// wValue = Can Bus Num to forward from
// wIndex = Can Bus Num to forward to
if ((setup->b.wValue.w < BUS_MAX) && (setup->b.wIndex.w < BUS_MAX) &&
(setup->b.wValue.w != setup->b.wIndex.w)) { // set forwarding
can_set_forwarding(setup->b.wValue.w, setup->b.wIndex.w & CAN_BUS_NUM_MASK);
} else if((setup->b.wValue.w < BUS_MAX) && (setup->b.wIndex.w == 0xFFU)){ //Clear Forwarding
can_set_forwarding(setup->b.wValue.w, -1);
} else {
puts("Invalid CAN bus forwarding\n");
}
break;
// **** 0xde: set can bitrate
case 0xde:
if (setup->b.wValue.w < BUS_MAX) {
can_speed[setup->b.wValue.w] = setup->b.wIndex.w;
can_init(CAN_NUM_FROM_BUS_NUM(setup->b.wValue.w));
}
break;
// **** 0xdf: set long controls allowed
case 0xdf:
if (hardwired) {
long_controls_allowed = setup->b.wValue.w & 1U;
}
break;
// **** 0xe0: uart read
case 0xe0:
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) {
break;
}
if (ur == &esp_ring) {
uart_dma_drain();
}
// read
while ((resp_len < MIN(setup->b.wLength.w, MAX_RESP_LEN)) &&
getc(ur, (char*)&resp[resp_len])) {
++resp_len;
}
break;
// **** 0xe1: uart set baud rate
case 0xe1:
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) {
break;
}
uart_set_baud(ur->uart, setup->b.wIndex.w);
break;
// **** 0xe2: uart set parity
case 0xe2:
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) {
break;
}
switch (setup->b.wIndex.w) {
case 0:
// disable parity, 8-bit
ur->uart->CR1 &= ~(USART_CR1_PCE | USART_CR1_M);
break;
case 1:
// even parity, 9-bit
ur->uart->CR1 &= ~USART_CR1_PS;
ur->uart->CR1 |= USART_CR1_PCE | USART_CR1_M;
break;
case 2:
// odd parity, 9-bit
ur->uart->CR1 |= USART_CR1_PS;
ur->uart->CR1 |= USART_CR1_PCE | USART_CR1_M;
break;
default:
break;
}
break;
// **** 0xe4: uart set baud rate extended
case 0xe4:
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) {
break;
}
uart_set_baud(ur->uart, (int)setup->b.wIndex.w*300);
break;
// **** 0xe5: set CAN loopback (for testing)
case 0xe5:
can_loopback = (setup->b.wValue.w > 0U);
can_init_all();
break;
// **** 0xe6: set USB power
case 0xe6:
if (setup->b.wValue.w == 1U) {
puts("user setting CDP mode\n");
set_usb_power_mode(USB_POWER_CDP);
} else if (setup->b.wValue.w == 2U) {
puts("user setting DCP mode\n");
set_usb_power_mode(USB_POWER_DCP);
} else {
puts("user setting CLIENT mode\n");
set_usb_power_mode(USB_POWER_CLIENT);
}
break;
// **** 0xf0: do k-line wValue pulse on uart2 for Acura
case 0xf0:
if (setup->b.wValue.w == 1U) {
GPIOC->ODR &= ~(1U << 10);
GPIOC->MODER &= ~GPIO_MODER_MODER10_1;
GPIOC->MODER |= GPIO_MODER_MODER10_0;
} else {
GPIOC->ODR &= ~(1U << 12);
GPIOC->MODER &= ~GPIO_MODER_MODER12_1;
GPIOC->MODER |= GPIO_MODER_MODER12_0;
}
for (i = 0; i < 80; i++) {
delay(8000);
if (setup->b.wValue.w == 1U) {
GPIOC->ODR |= (1U << 10);
GPIOC->ODR &= ~(1U << 10);
} else {
GPIOC->ODR |= (1U << 12);
GPIOC->ODR &= ~(1U << 12);
}
}
if (setup->b.wValue.w == 1U) {
GPIOC->MODER &= ~GPIO_MODER_MODER10_0;
GPIOC->MODER |= GPIO_MODER_MODER10_1;
} else {
GPIOC->MODER &= ~GPIO_MODER_MODER12_0;
GPIOC->MODER |= GPIO_MODER_MODER12_1;
}
delay(140 * 9000);
break;
// **** 0xf1: Clear CAN ring buffer.
case 0xf1:
if (setup->b.wValue.w == 0xFFFFU) {
puts("Clearing CAN Rx queue\n");
can_clear(&can_rx_q);
} else if (setup->b.wValue.w < BUS_MAX) {
puts("Clearing CAN Tx queue\n");
can_clear(can_queues[setup->b.wValue.w]);
} else {
puts("Clearing CAN CAN ring buffer failed: wrong bus number\n");
}
break;
// **** 0xf2: Clear UART ring buffer.
case 0xf2:
{
uart_ring * rb = get_ring_by_number(setup->b.wValue.w);
if (rb != NULL) {
puts("Clearing UART queue.\n");
clear_uart_buff(rb);
}
break;
}
default:
puts("NO HANDLER ");
puth(setup->b.bRequest);
puts("\n");
break;
}
return resp_len;
}
#ifndef EON
int spi_cb_rx(uint8_t *data, int len, uint8_t *data_out) {
// data[0] = endpoint
// data[2] = length
// data[4:] = data
UNUSED(len);
int resp_len = 0;
switch (data[0]) {
case 0:
// control transfer
resp_len = usb_cb_control_msg((USB_Setup_TypeDef *)(data+4), data_out, 0);
break;
case 1:
// ep 1, read
resp_len = usb_cb_ep1_in(data_out, 0x40, 0);
break;
case 2:
// ep 2, send serial
usb_cb_ep2_out(data+4, data[2], 0);
break;
case 3:
// ep 3, send CAN
usb_cb_ep3_out(data+4, data[2], 0);
break;
default:
puts("SPI data invalid");
break;
}
return resp_len;
}
#endif
// ***************************** main code *****************************
// cppcheck-suppress unusedFunction ; used in headers not included in cppcheck
void __initialize_hardware_early(void) {
early();
}
void __attribute__ ((noinline)) enable_fpu(void) {
// enable the FPU
SCB->CPACR |= ((3UL << (10U * 2U)) | (3UL << (11U * 2U)));
}
uint64_t tcnt = 0;
uint64_t marker = 0;
// called once per second
// cppcheck-suppress unusedFunction ; used in headers not included in cppcheck
void TIM3_IRQHandler(void) {
#define CURRENT_THRESHOLD 0xF00U
#define CLICKS 5U // 5 seconds to switch modes
if (TIM3->SR != 0) {
can_live = pending_can_live;
//puth(usart1_dma); puts(" "); puth(DMA2_Stream5->M0AR); puts(" "); puth(DMA2_Stream5->NDTR); puts("\n");
uint32_t current = adc_get(ADCCHAN_CURRENT);
switch (usb_power_mode) {
case USB_POWER_CLIENT:
if ((tcnt - marker) >= CLICKS) {
if (!is_enumerated) {
puts("USBP: didn't enumerate, switching to CDP mode\n");
// switch to CDP
set_usb_power_mode(USB_POWER_CDP);
marker = tcnt;
}
}
// keep resetting the timer if it's enumerated
if (is_enumerated) {
marker = tcnt;
}
break;
case USB_POWER_CDP:
// On the EON, if we get into CDP mode we stay here. No need to go to DCP.
#ifndef EON
// been CLICKS clicks since we switched to CDP
if ((tcnt-marker) >= CLICKS) {
// measure current draw, if positive and no enumeration, switch to DCP
if (!is_enumerated && (current < CURRENT_THRESHOLD)) {
puts("USBP: no enumeration with current draw, switching to DCP mode\n");
set_usb_power_mode(USB_POWER_DCP);
marker = tcnt;
}
}
// keep resetting the timer if there's no current draw in CDP
if (current >= CURRENT_THRESHOLD) {
marker = tcnt;
}
#endif
break;
case USB_POWER_DCP:
// been at least CLICKS clicks since we switched to DCP
if ((tcnt-marker) >= CLICKS) {
// if no current draw, switch back to CDP
if (current >= CURRENT_THRESHOLD) {
puts("USBP: no current draw, switching back to CDP mode\n");
set_usb_power_mode(USB_POWER_CDP);
marker = tcnt;
}
}
// keep resetting the timer if there's current draw in DCP
if (current < CURRENT_THRESHOLD) {
marker = tcnt;
}
break;
default:
puts("USB power mode invalid\n"); // set_usb_power_mode prevents assigning invalid values
break;
}
// ~0x9a = 500 ma
/*puth(current);
puts("\n");*/
// reset this every 16th pass
if ((tcnt & 0xFU) == 0U) {
pending_can_live = 0;
}
#ifdef DEBUG
puts("** blink ");
puth(can_rx_q.r_ptr); puts(" "); puth(can_rx_q.w_ptr); puts(" ");
puth(can_tx1_q.r_ptr); puts(" "); puth(can_tx1_q.w_ptr); puts(" ");
puth(can_tx2_q.r_ptr); puts(" "); puth(can_tx2_q.w_ptr); puts("\n");
#endif
// set green LED to be controls allowed
set_led(LED_GREEN, controls_allowed);
// turn off the blue LED, turned on by CAN
// unless we are in power saving mode
set_led(LED_BLUE, (tcnt & 1U) && (power_save_status == POWER_SAVE_STATUS_ENABLED));
// on to the next one
tcnt += 1U;
}
TIM3->SR = 0;
}
int main(void) {
// shouldn't have interrupts here, but just in case
__disable_irq();
// init early devices
clock_init();
periph_init();
detect();
// print hello
puts("\n\n\n************************ MAIN START ************************\n");
// detect the revision and init the GPIOs
puts("config:\n");
puts((revision == PANDA_REV_C) ? " panda rev c\n" : " panda rev a or b\n");
puts(has_external_debug_serial ? " real serial\n" : " USB serial\n");
puts(is_giant_panda ? " GIANTpanda detected\n" : " not GIANTpanda\n");
puts(is_grey_panda ? " gray panda detected!\n" : " white panda\n");
puts(is_entering_bootmode ? " ESP wants bootmode\n" : " no bootmode\n");
// non rev c panda are no longer supported
while (revision != PANDA_REV_C) {
// hang
}
gpio_init();
// panda has an FPU, let's use it!
enable_fpu();
// enable main uart if it's connected
if (has_external_debug_serial) {
// WEIRDNESS: without this gate around the UART, it would "crash", but only if the ESP is enabled
// assuming it's because the lines were left floating and spurious noise was on them
uart_init(USART2, 115200);
}
if (is_grey_panda) {
uart_init(USART1, 9600);
} else {
// enable ESP uart
uart_init(USART1, 115200);
}
// enable LIN
uart_init(UART5, 10400);
UART5->CR2 |= USART_CR2_LINEN;
uart_init(USART3, 10400);
USART3->CR2 |= USART_CR2_LINEN;
// init microsecond system timer
// increments 1000000 times per second
// generate an update to set the prescaler
TIM2->PSC = 48-1;
TIM2->CR1 = TIM_CR1_CEN;
TIM2->EGR = TIM_EGR_UG;
// use TIM2->CNT to read
// enable USB
usb_init();
// default to silent mode to prevent issues with Ford
// hardcode a specific safety mode if you want to force the panda to be in a specific mode
int err = safety_set_mode(SAFETY_NOOUTPUT, 0);
if (err == -1) {
puts("Failed to set safety mode\n");
while (true) {
// if SAFETY_NOOUTPUT isn't succesfully set, we can't continue
}
}
#ifdef EON
// if we're on an EON, it's fine for CAN to be live for fingerprinting
can_silent = ALL_CAN_LIVE;
#else
can_silent = ALL_CAN_SILENT;
#endif
can_init_all();
adc_init();
#ifndef EON
spi_init();
#endif
#ifdef EON
// have to save power
if (!is_grey_panda) {
set_esp_mode(ESP_DISABLED);
}
// only enter power save after the first cycle
/*if (is_gpio_started()) {
set_power_save_state(POWER_SAVE_STATUS_ENABLED);
}*/
// interrupt on started line
started_interrupt_init();
#endif
// 48mhz / 65536 ~= 732 / 732 = 1
timer_init(TIM3, 732);
NVIC_EnableIRQ(TIM3_IRQn);
#ifdef DEBUG
puts("DEBUG ENABLED\n");
#endif
puts("**** INTERRUPTS ON ****\n");
enable_interrupts();
// LED should keep on blinking all the time
uint64_t cnt = 0;
for (cnt=0;;cnt++) {
if (power_save_status == POWER_SAVE_STATUS_DISABLED) {
int div_mode = ((usb_power_mode == USB_POWER_DCP) ? 4 : 1);
// useful for debugging, fade breaks = panda is overloaded
for (int div_mode_loop = 0; div_mode_loop < div_mode; div_mode_loop++) {
for (int fade = 0; fade < 1024; fade += 8) {
for (int i = 0; i < (128/div_mode); i++) {
set_led(LED_RED, 1);
if (fade < 512) { delay(fade); } else { delay(1024-fade); }
set_led(LED_RED, 0);
if (fade < 512) { delay(512-fade); } else { delay(fade-512); }
}
}
}
} else {
__WFI();
}
}
return 0;
}