You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
512 lines
18 KiB
512 lines
18 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SPLINE_H
|
|
#define EIGEN_SPLINE_H
|
|
|
|
#include "SplineFwd.h"
|
|
|
|
namespace Eigen
|
|
{
|
|
/**
|
|
* \ingroup Splines_Module
|
|
* \class Spline
|
|
* \brief A class representing multi-dimensional spline curves.
|
|
*
|
|
* The class represents B-splines with non-uniform knot vectors. Each control
|
|
* point of the B-spline is associated with a basis function
|
|
* \f{align*}
|
|
* C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i
|
|
* \f}
|
|
*
|
|
* \tparam _Scalar The underlying data type (typically float or double)
|
|
* \tparam _Dim The curve dimension (e.g. 2 or 3)
|
|
* \tparam _Degree Per default set to Dynamic; could be set to the actual desired
|
|
* degree for optimization purposes (would result in stack allocation
|
|
* of several temporary variables).
|
|
**/
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
class Spline
|
|
{
|
|
public:
|
|
typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
|
|
enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
|
|
enum { Degree = _Degree /*!< The spline curve's degree. */ };
|
|
|
|
/** \brief The point type the spline is representing. */
|
|
typedef typename SplineTraits<Spline>::PointType PointType;
|
|
|
|
/** \brief The data type used to store knot vectors. */
|
|
typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType;
|
|
|
|
/** \brief The data type used to store parameter vectors. */
|
|
typedef typename SplineTraits<Spline>::ParameterVectorType ParameterVectorType;
|
|
|
|
/** \brief The data type used to store non-zero basis functions. */
|
|
typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType;
|
|
|
|
/** \brief The data type used to store the values of the basis function derivatives. */
|
|
typedef typename SplineTraits<Spline>::BasisDerivativeType BasisDerivativeType;
|
|
|
|
/** \brief The data type representing the spline's control points. */
|
|
typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType;
|
|
|
|
/**
|
|
* \brief Creates a (constant) zero spline.
|
|
* For Splines with dynamic degree, the resulting degree will be 0.
|
|
**/
|
|
Spline()
|
|
: m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
|
|
, m_ctrls(ControlPointVectorType::Zero(Dimension,(Degree==Dynamic ? 1 : Degree+1)))
|
|
{
|
|
// in theory this code can go to the initializer list but it will get pretty
|
|
// much unreadable ...
|
|
enum { MinDegree = (Degree==Dynamic ? 0 : Degree) };
|
|
m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero();
|
|
m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones();
|
|
}
|
|
|
|
/**
|
|
* \brief Creates a spline from a knot vector and control points.
|
|
* \param knots The spline's knot vector.
|
|
* \param ctrls The spline's control point vector.
|
|
**/
|
|
template <typename OtherVectorType, typename OtherArrayType>
|
|
Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {}
|
|
|
|
/**
|
|
* \brief Copy constructor for splines.
|
|
* \param spline The input spline.
|
|
**/
|
|
template <int OtherDegree>
|
|
Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) :
|
|
m_knots(spline.knots()), m_ctrls(spline.ctrls()) {}
|
|
|
|
/**
|
|
* \brief Returns the knots of the underlying spline.
|
|
**/
|
|
const KnotVectorType& knots() const { return m_knots; }
|
|
|
|
/**
|
|
* \brief Returns the ctrls of the underlying spline.
|
|
**/
|
|
const ControlPointVectorType& ctrls() const { return m_ctrls; }
|
|
|
|
/**
|
|
* \brief Returns the spline value at a given site \f$u\f$.
|
|
*
|
|
* The function returns
|
|
* \f{align*}
|
|
* C(u) & = \sum_{i=0}^{n}N_{i,p}P_i
|
|
* \f}
|
|
*
|
|
* \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated.
|
|
* \return The spline value at the given location \f$u\f$.
|
|
**/
|
|
PointType operator()(Scalar u) const;
|
|
|
|
/**
|
|
* \brief Evaluation of spline derivatives of up-to given order.
|
|
*
|
|
* The function returns
|
|
* \f{align*}
|
|
* \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i
|
|
* \f}
|
|
* for i ranging between 0 and order.
|
|
*
|
|
* \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated.
|
|
* \param order The order up to which the derivatives are computed.
|
|
**/
|
|
typename SplineTraits<Spline>::DerivativeType
|
|
derivatives(Scalar u, DenseIndex order) const;
|
|
|
|
/**
|
|
* \copydoc Spline::derivatives
|
|
* Using the template version of this function is more efficieent since
|
|
* temporary objects are allocated on the stack whenever this is possible.
|
|
**/
|
|
template <int DerivativeOrder>
|
|
typename SplineTraits<Spline,DerivativeOrder>::DerivativeType
|
|
derivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
|
|
|
|
/**
|
|
* \brief Computes the non-zero basis functions at the given site.
|
|
*
|
|
* Splines have local support and a point from their image is defined
|
|
* by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the
|
|
* spline degree.
|
|
*
|
|
* This function computes the \f$p+1\f$ non-zero basis function values
|
|
* for a given parameter value \f$u\f$. It returns
|
|
* \f{align*}{
|
|
* N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
|
|
* \f}
|
|
*
|
|
* \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions
|
|
* are computed.
|
|
**/
|
|
typename SplineTraits<Spline>::BasisVectorType
|
|
basisFunctions(Scalar u) const;
|
|
|
|
/**
|
|
* \brief Computes the non-zero spline basis function derivatives up to given order.
|
|
*
|
|
* The function computes
|
|
* \f{align*}{
|
|
* \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u)
|
|
* \f}
|
|
* with i ranging from 0 up to the specified order.
|
|
*
|
|
* \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function
|
|
* derivatives are computed.
|
|
* \param order The order up to which the basis function derivatives are computes.
|
|
**/
|
|
typename SplineTraits<Spline>::BasisDerivativeType
|
|
basisFunctionDerivatives(Scalar u, DenseIndex order) const;
|
|
|
|
/**
|
|
* \copydoc Spline::basisFunctionDerivatives
|
|
* Using the template version of this function is more efficieent since
|
|
* temporary objects are allocated on the stack whenever this is possible.
|
|
**/
|
|
template <int DerivativeOrder>
|
|
typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType
|
|
basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
|
|
|
|
/**
|
|
* \brief Returns the spline degree.
|
|
**/
|
|
DenseIndex degree() const;
|
|
|
|
/**
|
|
* \brief Returns the span within the knot vector in which u is falling.
|
|
* \param u The site for which the span is determined.
|
|
**/
|
|
DenseIndex span(Scalar u) const;
|
|
|
|
/**
|
|
* \brief Computes the spang within the provided knot vector in which u is falling.
|
|
**/
|
|
static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots);
|
|
|
|
/**
|
|
* \brief Returns the spline's non-zero basis functions.
|
|
*
|
|
* The function computes and returns
|
|
* \f{align*}{
|
|
* N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
|
|
* \f}
|
|
*
|
|
* \param u The site at which the basis functions are computed.
|
|
* \param degree The degree of the underlying spline.
|
|
* \param knots The underlying spline's knot vector.
|
|
**/
|
|
static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
|
|
|
|
/**
|
|
* \copydoc Spline::basisFunctionDerivatives
|
|
* \param degree The degree of the underlying spline
|
|
* \param knots The underlying spline's knot vector.
|
|
**/
|
|
static BasisDerivativeType BasisFunctionDerivatives(
|
|
const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots);
|
|
|
|
private:
|
|
KnotVectorType m_knots; /*!< Knot vector. */
|
|
ControlPointVectorType m_ctrls; /*!< Control points. */
|
|
|
|
template <typename DerivativeType>
|
|
static void BasisFunctionDerivativesImpl(
|
|
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
|
|
const DenseIndex order,
|
|
const DenseIndex p,
|
|
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
|
|
DerivativeType& N_);
|
|
};
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
DenseIndex Spline<_Scalar, _Dim, _Degree>::Span(
|
|
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u,
|
|
DenseIndex degree,
|
|
const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots)
|
|
{
|
|
// Piegl & Tiller, "The NURBS Book", A2.1 (p. 68)
|
|
if (u <= knots(0)) return degree;
|
|
const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
|
|
return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType
|
|
Spline<_Scalar, _Dim, _Degree>::BasisFunctions(
|
|
typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
|
|
DenseIndex degree,
|
|
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
|
|
{
|
|
typedef typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType BasisVectorType;
|
|
|
|
const DenseIndex p = degree;
|
|
const DenseIndex i = Spline::Span(u, degree, knots);
|
|
|
|
const KnotVectorType& U = knots;
|
|
|
|
BasisVectorType left(p+1); left(0) = Scalar(0);
|
|
BasisVectorType right(p+1); right(0) = Scalar(0);
|
|
|
|
VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse();
|
|
VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u;
|
|
|
|
BasisVectorType N(1,p+1);
|
|
N(0) = Scalar(1);
|
|
for (DenseIndex j=1; j<=p; ++j)
|
|
{
|
|
Scalar saved = Scalar(0);
|
|
for (DenseIndex r=0; r<j; r++)
|
|
{
|
|
const Scalar tmp = N(r)/(right(r+1)+left(j-r));
|
|
N[r] = saved + right(r+1)*tmp;
|
|
saved = left(j-r)*tmp;
|
|
}
|
|
N(j) = saved;
|
|
}
|
|
return N;
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const
|
|
{
|
|
if (_Degree == Dynamic)
|
|
return m_knots.size() - m_ctrls.cols() - 1;
|
|
else
|
|
return _Degree;
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const
|
|
{
|
|
return Spline::Span(u, degree(), knots());
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const
|
|
{
|
|
enum { Order = SplineTraits<Spline>::OrderAtCompileTime };
|
|
|
|
const DenseIndex span = this->span(u);
|
|
const DenseIndex p = degree();
|
|
const BasisVectorType basis_funcs = basisFunctions(u);
|
|
|
|
const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs);
|
|
const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1);
|
|
return (ctrl_weights * ctrl_pts).rowwise().sum();
|
|
}
|
|
|
|
/* --------------------------------------------------------------------------------------------- */
|
|
|
|
template <typename SplineType, typename DerivativeType>
|
|
void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der)
|
|
{
|
|
enum { Dimension = SplineTraits<SplineType>::Dimension };
|
|
enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
|
|
enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
|
|
|
|
typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType;
|
|
typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType;
|
|
typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
|
|
|
|
const DenseIndex p = spline.degree();
|
|
const DenseIndex span = spline.span(u);
|
|
|
|
const DenseIndex n = (std::min)(p, order);
|
|
|
|
der.resize(Dimension,n+1);
|
|
|
|
// Retrieve the basis function derivatives up to the desired order...
|
|
const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
|
|
|
|
// ... and perform the linear combinations of the control points.
|
|
for (DenseIndex der_order=0; der_order<n+1; ++der_order)
|
|
{
|
|
const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
|
|
const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
|
|
der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
|
|
}
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
|
|
Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
|
|
{
|
|
typename SplineTraits< Spline >::DerivativeType res;
|
|
derivativesImpl(*this, u, order, res);
|
|
return res;
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
template <int DerivativeOrder>
|
|
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType
|
|
Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
|
|
{
|
|
typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res;
|
|
derivativesImpl(*this, u, order, res);
|
|
return res;
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType
|
|
Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const
|
|
{
|
|
return Spline::BasisFunctions(u, degree(), knots());
|
|
}
|
|
|
|
/* --------------------------------------------------------------------------------------------- */
|
|
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
template <typename DerivativeType>
|
|
void Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivativesImpl(
|
|
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
|
|
const DenseIndex order,
|
|
const DenseIndex p,
|
|
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
|
|
DerivativeType& N_)
|
|
{
|
|
typedef Spline<_Scalar, _Dim, _Degree> SplineType;
|
|
enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
|
|
|
|
typedef typename SplineTraits<SplineType>::Scalar Scalar;
|
|
typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType;
|
|
|
|
const DenseIndex span = SplineType::Span(u, p, U);
|
|
|
|
const DenseIndex n = (std::min)(p, order);
|
|
|
|
N_.resize(n+1, p+1);
|
|
|
|
BasisVectorType left = BasisVectorType::Zero(p+1);
|
|
BasisVectorType right = BasisVectorType::Zero(p+1);
|
|
|
|
Matrix<Scalar,Order,Order> ndu(p+1,p+1);
|
|
|
|
Scalar saved, temp; // FIXME These were double instead of Scalar. Was there a reason for that?
|
|
|
|
ndu(0,0) = 1.0;
|
|
|
|
DenseIndex j;
|
|
for (j=1; j<=p; ++j)
|
|
{
|
|
left[j] = u-U[span+1-j];
|
|
right[j] = U[span+j]-u;
|
|
saved = 0.0;
|
|
|
|
for (DenseIndex r=0; r<j; ++r)
|
|
{
|
|
/* Lower triangle */
|
|
ndu(j,r) = right[r+1]+left[j-r];
|
|
temp = ndu(r,j-1)/ndu(j,r);
|
|
/* Upper triangle */
|
|
ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp);
|
|
saved = left[j-r] * temp;
|
|
}
|
|
|
|
ndu(j,j) = static_cast<Scalar>(saved);
|
|
}
|
|
|
|
for (j = p; j>=0; --j)
|
|
N_(0,j) = ndu(j,p);
|
|
|
|
// Compute the derivatives
|
|
DerivativeType a(n+1,p+1);
|
|
DenseIndex r=0;
|
|
for (; r<=p; ++r)
|
|
{
|
|
DenseIndex s1,s2;
|
|
s1 = 0; s2 = 1; // alternate rows in array a
|
|
a(0,0) = 1.0;
|
|
|
|
// Compute the k-th derivative
|
|
for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
|
|
{
|
|
Scalar d = 0.0;
|
|
DenseIndex rk,pk,j1,j2;
|
|
rk = r-k; pk = p-k;
|
|
|
|
if (r>=k)
|
|
{
|
|
a(s2,0) = a(s1,0)/ndu(pk+1,rk);
|
|
d = a(s2,0)*ndu(rk,pk);
|
|
}
|
|
|
|
if (rk>=-1) j1 = 1;
|
|
else j1 = -rk;
|
|
|
|
if (r-1 <= pk) j2 = k-1;
|
|
else j2 = p-r;
|
|
|
|
for (j=j1; j<=j2; ++j)
|
|
{
|
|
a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j);
|
|
d += a(s2,j)*ndu(rk+j,pk);
|
|
}
|
|
|
|
if (r<=pk)
|
|
{
|
|
a(s2,k) = -a(s1,k-1)/ndu(pk+1,r);
|
|
d += a(s2,k)*ndu(r,pk);
|
|
}
|
|
|
|
N_(k,r) = static_cast<Scalar>(d);
|
|
j = s1; s1 = s2; s2 = j; // Switch rows
|
|
}
|
|
}
|
|
|
|
/* Multiply through by the correct factors */
|
|
/* (Eq. [2.9]) */
|
|
r = p;
|
|
for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
|
|
{
|
|
for (j=p; j>=0; --j) N_(k,j) *= r;
|
|
r *= p-k;
|
|
}
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
|
|
Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
|
|
{
|
|
typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType der;
|
|
BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
|
|
return der;
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
template <int DerivativeOrder>
|
|
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
|
|
Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
|
|
{
|
|
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType der;
|
|
BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
|
|
return der;
|
|
}
|
|
|
|
template <typename _Scalar, int _Dim, int _Degree>
|
|
typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
|
|
Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivatives(
|
|
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
|
|
const DenseIndex order,
|
|
const DenseIndex degree,
|
|
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
|
|
{
|
|
typename SplineTraits<Spline>::BasisDerivativeType der;
|
|
BasisFunctionDerivativesImpl(u, order, degree, knots, der);
|
|
return der;
|
|
}
|
|
}
|
|
|
|
#endif // EIGEN_SPLINE_H
|
|
|