You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							131 lines
						
					
					
						
							4.8 KiB
						
					
					
				
			
		
		
	
	
							131 lines
						
					
					
						
							4.8 KiB
						
					
					
				#
 | 
						|
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
 | 
						|
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
 | 
						|
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
 | 
						|
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
 | 
						|
#
 | 
						|
# This file is part of acados.
 | 
						|
#
 | 
						|
# The 2-Clause BSD License
 | 
						|
#
 | 
						|
# Redistribution and use in source and binary forms, with or without
 | 
						|
# modification, are permitted provided that the following conditions are met:
 | 
						|
#
 | 
						|
# 1. Redistributions of source code must retain the above copyright notice,
 | 
						|
# this list of conditions and the following disclaimer.
 | 
						|
#
 | 
						|
# 2. Redistributions in binary form must reproduce the above copyright notice,
 | 
						|
# this list of conditions and the following disclaimer in the documentation
 | 
						|
# and/or other materials provided with the distribution.
 | 
						|
#
 | 
						|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | 
						|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
						|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
						|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
						|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
						|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
						|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
						|
# POSSIBILITY OF SUCH DAMAGE.;
 | 
						|
#
 | 
						|
 | 
						|
import os
 | 
						|
from casadi import *
 | 
						|
from .utils import ALLOWED_CASADI_VERSIONS, is_empty, casadi_version_warning
 | 
						|
 | 
						|
def generate_c_code_gnsf( model, opts ):
 | 
						|
 | 
						|
    casadi_version = CasadiMeta.version()
 | 
						|
    casadi_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | 
						|
    if casadi_version not in (ALLOWED_CASADI_VERSIONS):
 | 
						|
        casadi_version_warning(casadi_version)
 | 
						|
 | 
						|
    model_name = model.name
 | 
						|
    code_export_dir = opts["code_export_directory"]
 | 
						|
 | 
						|
    # set up directory
 | 
						|
    if not os.path.exists(code_export_dir):
 | 
						|
        os.makedirs(code_export_dir)
 | 
						|
 | 
						|
    cwd = os.getcwd()
 | 
						|
    os.chdir(code_export_dir)
 | 
						|
    model_dir = model_name + '_model'
 | 
						|
    if not os.path.exists(model_dir):
 | 
						|
        os.mkdir(model_dir)
 | 
						|
    model_dir_location = './' + model_dir
 | 
						|
    os.chdir(model_dir_location)
 | 
						|
 | 
						|
    # obtain gnsf dimensions
 | 
						|
    get_matrices_fun = model.get_matrices_fun
 | 
						|
    phi_fun = model.phi_fun
 | 
						|
 | 
						|
    size_gnsf_A = get_matrices_fun.size_out(0)
 | 
						|
    gnsf_nx1 = size_gnsf_A[1]
 | 
						|
    gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1]
 | 
						|
    gnsf_nuhat = max(phi_fun.size_in(1))
 | 
						|
    gnsf_ny = max(phi_fun.size_in(0))
 | 
						|
    gnsf_nout = max(phi_fun.size_out(0))
 | 
						|
 | 
						|
    # set up expressions
 | 
						|
    # if the model uses MX because of cost/constraints
 | 
						|
    # the DAE can be exported as SX -> detect GNSF in Matlab
 | 
						|
    # -> evaluated SX GNSF functions with MX.
 | 
						|
    u = model.u
 | 
						|
 | 
						|
    if isinstance(u, casadi.MX):
 | 
						|
        symbol = MX.sym
 | 
						|
    else:
 | 
						|
        symbol = SX.sym
 | 
						|
 | 
						|
    y = symbol("y", gnsf_ny, 1)
 | 
						|
    uhat = symbol("uhat", gnsf_nuhat, 1)
 | 
						|
    p = model.p
 | 
						|
    x1 = symbol("gnsf_x1", gnsf_nx1, 1)
 | 
						|
    x1dot = symbol("gnsf_x1dot", gnsf_nx1, 1)
 | 
						|
    z1 = symbol("gnsf_z1", gnsf_nz1, 1)
 | 
						|
    dummy = symbol("gnsf_dummy", 1, 1)
 | 
						|
    empty_var = symbol("gnsf_empty_var", 0, 0)
 | 
						|
 | 
						|
    ## generate C code
 | 
						|
    fun_name = model_name + '_gnsf_phi_fun'
 | 
						|
    phi_fun_ = Function(fun_name, [y, uhat, p], [phi_fun(y, uhat, p)])
 | 
						|
    phi_fun_.generate(fun_name, casadi_opts)
 | 
						|
 | 
						|
    fun_name = model_name + '_gnsf_phi_fun_jac_y'
 | 
						|
    phi_fun_jac_y = model.phi_fun_jac_y
 | 
						|
    phi_fun_jac_y_ = Function(fun_name, [y, uhat, p], phi_fun_jac_y(y, uhat, p))
 | 
						|
    phi_fun_jac_y_.generate(fun_name, casadi_opts)
 | 
						|
 | 
						|
    fun_name = model_name + '_gnsf_phi_jac_y_uhat'
 | 
						|
    phi_jac_y_uhat = model.phi_jac_y_uhat
 | 
						|
    phi_jac_y_uhat_ = Function(fun_name, [y, uhat, p], phi_jac_y_uhat(y, uhat, p))
 | 
						|
    phi_jac_y_uhat_.generate(fun_name, casadi_opts)
 | 
						|
 | 
						|
    fun_name = model_name + '_gnsf_f_lo_fun_jac_x1k1uz'
 | 
						|
    f_lo_fun_jac_x1k1uz = model.f_lo_fun_jac_x1k1uz
 | 
						|
    f_lo_fun_jac_x1k1uz_eval = f_lo_fun_jac_x1k1uz(x1, x1dot, z1, u, p)
 | 
						|
 | 
						|
    # avoid codegeneration issue
 | 
						|
    if not isinstance(f_lo_fun_jac_x1k1uz_eval, tuple) and is_empty(f_lo_fun_jac_x1k1uz_eval):
 | 
						|
        f_lo_fun_jac_x1k1uz_eval = [empty_var]
 | 
						|
 | 
						|
    f_lo_fun_jac_x1k1uz_ = Function(fun_name, [x1, x1dot, z1, u, p],
 | 
						|
                 f_lo_fun_jac_x1k1uz_eval)
 | 
						|
    f_lo_fun_jac_x1k1uz_.generate(fun_name, casadi_opts)
 | 
						|
 | 
						|
    fun_name = model_name + '_gnsf_get_matrices_fun'
 | 
						|
    get_matrices_fun_ = Function(fun_name, [dummy], get_matrices_fun(1))
 | 
						|
    get_matrices_fun_.generate(fun_name, casadi_opts)
 | 
						|
 | 
						|
    # remove fields for json dump
 | 
						|
    del model.phi_fun
 | 
						|
    del model.phi_fun_jac_y
 | 
						|
    del model.phi_jac_y_uhat
 | 
						|
    del model.f_lo_fun_jac_x1k1uz
 | 
						|
    del model.get_matrices_fun
 | 
						|
 | 
						|
    os.chdir(cwd)
 | 
						|
 | 
						|
    return
 | 
						|
 |