You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							708 lines
						
					
					
						
							22 KiB
						
					
					
				
			
		
		
	
	
							708 lines
						
					
					
						
							22 KiB
						
					
					
				| #
 | |
| # Copyright (c) The acados authors.
 | |
| #
 | |
| # This file is part of acados.
 | |
| #
 | |
| # The 2-Clause BSD License
 | |
| #
 | |
| # Redistribution and use in source and binary forms, with or without
 | |
| # modification, are permitted provided that the following conditions are met:
 | |
| #
 | |
| # 1. Redistributions of source code must retain the above copyright notice,
 | |
| # this list of conditions and the following disclaimer.
 | |
| #
 | |
| # 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
| # this list of conditions and the following disclaimer in the documentation
 | |
| # and/or other materials provided with the distribution.
 | |
| #
 | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | |
| # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| # POSSIBILITY OF SUCH DAMAGE.;
 | |
| #
 | |
| 
 | |
| import os
 | |
| import casadi as ca
 | |
| from .utils import is_empty, casadi_length
 | |
| 
 | |
| 
 | |
| def get_casadi_symbol(x):
 | |
|     if isinstance(x, ca.MX):
 | |
|         return ca.MX.sym
 | |
|     elif isinstance(x, ca.SX):
 | |
|         return ca.SX.sym
 | |
|     else:
 | |
|         raise TypeError("Expected casadi SX or MX.")
 | |
| 
 | |
| ################
 | |
| # Dynamics
 | |
| ################
 | |
| 
 | |
| 
 | |
| def generate_c_code_discrete_dynamics( model, opts ):
 | |
| 
 | |
|     casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
| 
 | |
|     # load model
 | |
|     x = model.x
 | |
|     u = model.u
 | |
|     p = model.p
 | |
|     phi = model.disc_dyn_expr
 | |
|     model_name = model.name
 | |
|     nx = casadi_length(x)
 | |
| 
 | |
|     symbol = get_casadi_symbol(x)
 | |
|     # assume nx1 = nx !!!
 | |
|     lam = symbol('lam', nx, 1)
 | |
| 
 | |
|     # generate jacobians
 | |
|     ux = ca.vertcat(u,x)
 | |
|     jac_ux = ca.jacobian(phi, ux)
 | |
|     # generate adjoint
 | |
|     adj_ux = ca.jtimes(phi, ux, lam, True)
 | |
|     # generate hessian
 | |
|     hess_ux = ca.jacobian(adj_ux, ux)
 | |
| 
 | |
|     # change directory
 | |
|     cwd = os.getcwd()
 | |
|     model_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model_name}_model'))
 | |
|     if not os.path.exists(model_dir):
 | |
|         os.makedirs(model_dir)
 | |
|     os.chdir(model_dir)
 | |
| 
 | |
|     # set up & generate ca.Functions
 | |
|     fun_name = model_name + '_dyn_disc_phi_fun'
 | |
|     phi_fun = ca.Function(fun_name, [x, u, p], [phi])
 | |
|     phi_fun.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_dyn_disc_phi_fun_jac'
 | |
|     phi_fun_jac_ut_xt = ca.Function(fun_name, [x, u, p], [phi, jac_ux.T])
 | |
|     phi_fun_jac_ut_xt.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_dyn_disc_phi_fun_jac_hess'
 | |
|     phi_fun_jac_ut_xt_hess = ca.Function(fun_name, [x, u, lam, p], [phi, jac_ux.T, hess_ux])
 | |
|     phi_fun_jac_ut_xt_hess.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     os.chdir(cwd)
 | |
|     return
 | |
| 
 | |
| 
 | |
| 
 | |
| def generate_c_code_explicit_ode( model, opts ):
 | |
| 
 | |
|     casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
| 
 | |
|     generate_hess = opts["generate_hess"]
 | |
| 
 | |
|     # load model
 | |
|     x = model.x
 | |
|     u = model.u
 | |
|     p = model.p
 | |
|     f_expl = model.f_expl_expr
 | |
|     model_name = model.name
 | |
| 
 | |
|     ## get model dimensions
 | |
|     nx = x.size()[0]
 | |
|     nu = u.size()[0]
 | |
| 
 | |
|     symbol = get_casadi_symbol(x)
 | |
| 
 | |
|     ## set up functions to be exported
 | |
|     Sx = symbol('Sx', nx, nx)
 | |
|     Sp = symbol('Sp', nx, nu)
 | |
|     lambdaX = symbol('lambdaX', nx, 1)
 | |
| 
 | |
|     fun_name = model_name + '_expl_ode_fun'
 | |
| 
 | |
|     ## Set up functions
 | |
|     expl_ode_fun = ca.Function(fun_name, [x, u, p], [f_expl])
 | |
| 
 | |
|     vdeX = ca.jtimes(f_expl,x,Sx)
 | |
|     vdeP = ca.jacobian(f_expl,u) + ca.jtimes(f_expl,x,Sp)
 | |
| 
 | |
|     fun_name = model_name + '_expl_vde_forw'
 | |
| 
 | |
|     expl_vde_forw = ca.Function(fun_name, [x, Sx, Sp, u, p], [f_expl, vdeX, vdeP])
 | |
| 
 | |
|     adj = ca.jtimes(f_expl, ca.vertcat(x, u), lambdaX, True)
 | |
| 
 | |
|     fun_name = model_name + '_expl_vde_adj'
 | |
|     expl_vde_adj = ca.Function(fun_name, [x, lambdaX, u, p], [adj])
 | |
| 
 | |
|     if generate_hess:
 | |
|         S_forw = ca.vertcat(ca.horzcat(Sx, Sp), ca.horzcat(ca.DM.zeros(nu,nx), ca.DM.eye(nu)))
 | |
|         hess = ca.mtimes(ca.transpose(S_forw),ca.jtimes(adj, ca.vertcat(x,u), S_forw))
 | |
|         hess2 = []
 | |
|         for j in range(nx+nu):
 | |
|             for i in range(j,nx+nu):
 | |
|                 hess2 = ca.vertcat(hess2, hess[i,j])
 | |
| 
 | |
|         fun_name = model_name + '_expl_ode_hess'
 | |
|         expl_ode_hess = ca.Function(fun_name, [x, Sx, Sp, lambdaX, u, p], [adj, hess2])
 | |
| 
 | |
|     # change directory
 | |
|     cwd = os.getcwd()
 | |
|     model_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model_name}_model'))
 | |
|     if not os.path.exists(model_dir):
 | |
|         os.makedirs(model_dir)
 | |
|     os.chdir(model_dir)
 | |
| 
 | |
|     # generate C code
 | |
|     fun_name = model_name + '_expl_ode_fun'
 | |
|     expl_ode_fun.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_expl_vde_forw'
 | |
|     expl_vde_forw.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_expl_vde_adj'
 | |
|     expl_vde_adj.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     if generate_hess:
 | |
|         fun_name = model_name + '_expl_ode_hess'
 | |
|         expl_ode_hess.generate(fun_name, casadi_codegen_opts)
 | |
|     os.chdir(cwd)
 | |
| 
 | |
|     return
 | |
| 
 | |
| 
 | |
| def generate_c_code_implicit_ode( model, opts ):
 | |
| 
 | |
|     casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
| 
 | |
|     # load model
 | |
|     x = model.x
 | |
|     xdot = model.xdot
 | |
|     u = model.u
 | |
|     z = model.z
 | |
|     p = model.p
 | |
|     f_impl = model.f_impl_expr
 | |
|     model_name = model.name
 | |
| 
 | |
|     # get model dimensions
 | |
|     nx = casadi_length(x)
 | |
|     nz = casadi_length(z)
 | |
| 
 | |
|     # generate jacobians
 | |
|     jac_x       = ca.jacobian(f_impl, x)
 | |
|     jac_xdot    = ca.jacobian(f_impl, xdot)
 | |
|     jac_u       = ca.jacobian(f_impl, u)
 | |
|     jac_z       = ca.jacobian(f_impl, z)
 | |
| 
 | |
|     # Set up functions
 | |
|     p = model.p
 | |
|     fun_name = model_name + '_impl_dae_fun'
 | |
|     impl_dae_fun = ca.Function(fun_name, [x, xdot, u, z, p], [f_impl])
 | |
| 
 | |
|     fun_name = model_name + '_impl_dae_fun_jac_x_xdot_z'
 | |
|     impl_dae_fun_jac_x_xdot_z = ca.Function(fun_name, [x, xdot, u, z, p], [f_impl, jac_x, jac_xdot, jac_z])
 | |
| 
 | |
|     fun_name = model_name + '_impl_dae_fun_jac_x_xdot_u_z'
 | |
|     impl_dae_fun_jac_x_xdot_u_z = ca.Function(fun_name, [x, xdot, u, z, p], [f_impl, jac_x, jac_xdot, jac_u, jac_z])
 | |
| 
 | |
|     fun_name = model_name + '_impl_dae_fun_jac_x_xdot_u'
 | |
|     impl_dae_fun_jac_x_xdot_u = ca.Function(fun_name, [x, xdot, u, z, p], [f_impl, jac_x, jac_xdot, jac_u])
 | |
| 
 | |
|     fun_name = model_name + '_impl_dae_jac_x_xdot_u_z'
 | |
|     impl_dae_jac_x_xdot_u_z = ca.Function(fun_name, [x, xdot, u, z, p], [jac_x, jac_xdot, jac_u, jac_z])
 | |
| 
 | |
|     if opts["generate_hess"]:
 | |
|         x_xdot_z_u = ca.vertcat(x, xdot, z, u)
 | |
|         symbol = get_casadi_symbol(x)
 | |
|         multiplier = symbol('multiplier', nx + nz)
 | |
|         ADJ = ca.jtimes(f_impl, x_xdot_z_u, multiplier, True)
 | |
|         HESS = ca.jacobian(ADJ, x_xdot_z_u)
 | |
|         fun_name = model_name + '_impl_dae_hess'
 | |
|         impl_dae_hess = ca.Function(fun_name, [x, xdot, u, z, multiplier, p], [HESS])
 | |
| 
 | |
|     # change directory
 | |
|     cwd = os.getcwd()
 | |
|     model_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model_name}_model'))
 | |
|     if not os.path.exists(model_dir):
 | |
|         os.makedirs(model_dir)
 | |
|     os.chdir(model_dir)
 | |
| 
 | |
|     # generate C code
 | |
|     fun_name = model_name + '_impl_dae_fun'
 | |
|     impl_dae_fun.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_impl_dae_fun_jac_x_xdot_z'
 | |
|     impl_dae_fun_jac_x_xdot_z.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_impl_dae_jac_x_xdot_u_z'
 | |
|     impl_dae_jac_x_xdot_u_z.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_impl_dae_fun_jac_x_xdot_u_z'
 | |
|     impl_dae_fun_jac_x_xdot_u_z.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_impl_dae_fun_jac_x_xdot_u'
 | |
|     impl_dae_fun_jac_x_xdot_u.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     if opts["generate_hess"]:
 | |
|         fun_name = model_name + '_impl_dae_hess'
 | |
|         impl_dae_hess.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     os.chdir(cwd)
 | |
|     return
 | |
| 
 | |
| 
 | |
| def generate_c_code_gnsf( model, opts ):
 | |
| 
 | |
|     casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
| 
 | |
|     model_name = model.name
 | |
| 
 | |
|     # set up directory
 | |
|     cwd = os.getcwd()
 | |
|     model_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model_name}_model'))
 | |
|     if not os.path.exists(model_dir):
 | |
|         os.makedirs(model_dir)
 | |
|     os.chdir(model_dir)
 | |
| 
 | |
|     # obtain gnsf dimensions
 | |
|     get_matrices_fun = model.get_matrices_fun
 | |
|     phi_fun = model.phi_fun
 | |
| 
 | |
|     size_gnsf_A = get_matrices_fun.size_out(0)
 | |
|     gnsf_nx1 = size_gnsf_A[1]
 | |
|     gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1]
 | |
|     gnsf_nuhat = max(phi_fun.size_in(1))
 | |
|     gnsf_ny = max(phi_fun.size_in(0))
 | |
|     gnsf_nout = max(phi_fun.size_out(0))
 | |
| 
 | |
|     # set up expressions
 | |
|     # if the model uses ca.MX because of cost/constraints
 | |
|     # the DAE can be exported as ca.SX -> detect GNSF in Matlab
 | |
|     # -> evaluated ca.SX GNSF functions with ca.MX.
 | |
|     u = model.u
 | |
|     symbol = get_casadi_symbol(u)
 | |
| 
 | |
|     y = symbol("y", gnsf_ny, 1)
 | |
|     uhat = symbol("uhat", gnsf_nuhat, 1)
 | |
|     p = model.p
 | |
|     x1 = symbol("gnsf_x1", gnsf_nx1, 1)
 | |
|     x1dot = symbol("gnsf_x1dot", gnsf_nx1, 1)
 | |
|     z1 = symbol("gnsf_z1", gnsf_nz1, 1)
 | |
|     dummy = symbol("gnsf_dummy", 1, 1)
 | |
|     empty_var = symbol("gnsf_empty_var", 0, 0)
 | |
| 
 | |
|     ## generate C code
 | |
|     fun_name = model_name + '_gnsf_phi_fun'
 | |
|     phi_fun_ = ca.Function(fun_name, [y, uhat, p], [phi_fun(y, uhat, p)])
 | |
|     phi_fun_.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_gnsf_phi_fun_jac_y'
 | |
|     phi_fun_jac_y = model.phi_fun_jac_y
 | |
|     phi_fun_jac_y_ = ca.Function(fun_name, [y, uhat, p], phi_fun_jac_y(y, uhat, p))
 | |
|     phi_fun_jac_y_.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_gnsf_phi_jac_y_uhat'
 | |
|     phi_jac_y_uhat = model.phi_jac_y_uhat
 | |
|     phi_jac_y_uhat_ = ca.Function(fun_name, [y, uhat, p], phi_jac_y_uhat(y, uhat, p))
 | |
|     phi_jac_y_uhat_.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_gnsf_f_lo_fun_jac_x1k1uz'
 | |
|     f_lo_fun_jac_x1k1uz = model.f_lo_fun_jac_x1k1uz
 | |
|     f_lo_fun_jac_x1k1uz_eval = f_lo_fun_jac_x1k1uz(x1, x1dot, z1, u, p)
 | |
| 
 | |
|     # avoid codegeneration issue
 | |
|     if not isinstance(f_lo_fun_jac_x1k1uz_eval, tuple) and is_empty(f_lo_fun_jac_x1k1uz_eval):
 | |
|         f_lo_fun_jac_x1k1uz_eval = [empty_var]
 | |
| 
 | |
|     f_lo_fun_jac_x1k1uz_ = ca.Function(fun_name, [x1, x1dot, z1, u, p],
 | |
|                  f_lo_fun_jac_x1k1uz_eval)
 | |
|     f_lo_fun_jac_x1k1uz_.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     fun_name = model_name + '_gnsf_get_matrices_fun'
 | |
|     get_matrices_fun_ = ca.Function(fun_name, [dummy], get_matrices_fun(1))
 | |
|     get_matrices_fun_.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     # remove fields for json dump
 | |
|     del model.phi_fun
 | |
|     del model.phi_fun_jac_y
 | |
|     del model.phi_jac_y_uhat
 | |
|     del model.f_lo_fun_jac_x1k1uz
 | |
|     del model.get_matrices_fun
 | |
| 
 | |
|     os.chdir(cwd)
 | |
| 
 | |
|     return
 | |
| 
 | |
| 
 | |
| ################
 | |
| # Cost
 | |
| ################
 | |
| 
 | |
| def generate_c_code_external_cost(model, stage_type, opts):
 | |
| 
 | |
|     casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
| 
 | |
|     x = model.x
 | |
|     p = model.p
 | |
|     u = model.u
 | |
|     z = model.z
 | |
|     symbol = get_casadi_symbol(x)
 | |
| 
 | |
|     if stage_type == 'terminal':
 | |
|         suffix_name = "_cost_ext_cost_e_fun"
 | |
|         suffix_name_hess = "_cost_ext_cost_e_fun_jac_hess"
 | |
|         suffix_name_jac = "_cost_ext_cost_e_fun_jac"
 | |
|         ext_cost = model.cost_expr_ext_cost_e
 | |
|         custom_hess = model.cost_expr_ext_cost_custom_hess_e
 | |
|         # Last stage cannot depend on u and z
 | |
|         u = symbol("u", 0, 0)
 | |
|         z = symbol("z", 0, 0)
 | |
| 
 | |
|     elif stage_type == 'path':
 | |
|         suffix_name = "_cost_ext_cost_fun"
 | |
|         suffix_name_hess = "_cost_ext_cost_fun_jac_hess"
 | |
|         suffix_name_jac = "_cost_ext_cost_fun_jac"
 | |
|         ext_cost = model.cost_expr_ext_cost
 | |
|         custom_hess = model.cost_expr_ext_cost_custom_hess
 | |
| 
 | |
|     elif stage_type == 'initial':
 | |
|         suffix_name = "_cost_ext_cost_0_fun"
 | |
|         suffix_name_hess = "_cost_ext_cost_0_fun_jac_hess"
 | |
|         suffix_name_jac = "_cost_ext_cost_0_fun_jac"
 | |
|         ext_cost = model.cost_expr_ext_cost_0
 | |
|         custom_hess = model.cost_expr_ext_cost_custom_hess_0
 | |
| 
 | |
|     nunx = x.shape[0] + u.shape[0]
 | |
| 
 | |
|     # set up functions to be exported
 | |
|     fun_name = model.name + suffix_name
 | |
|     fun_name_hess = model.name + suffix_name_hess
 | |
|     fun_name_jac = model.name + suffix_name_jac
 | |
| 
 | |
|     # generate expression for full gradient and Hessian
 | |
|     hess_uxz, grad_uxz = ca.hessian(ext_cost, ca.vertcat(u, x, z))
 | |
| 
 | |
|     hess_ux = hess_uxz[:nunx, :nunx]
 | |
|     hess_z = hess_uxz[nunx:, nunx:]
 | |
|     hess_z_ux = hess_uxz[nunx:, :nunx]
 | |
| 
 | |
|     if custom_hess is not None:
 | |
|         hess_ux = custom_hess
 | |
| 
 | |
|     ext_cost_fun = ca.Function(fun_name, [x, u, z, p], [ext_cost])
 | |
| 
 | |
|     ext_cost_fun_jac_hess = ca.Function(
 | |
|         fun_name_hess, [x, u, z, p], [ext_cost, grad_uxz, hess_ux, hess_z, hess_z_ux]
 | |
|     )
 | |
|     ext_cost_fun_jac = ca.Function(
 | |
|         fun_name_jac, [x, u, z, p], [ext_cost, grad_uxz]
 | |
|     )
 | |
| 
 | |
|     # change directory
 | |
|     cwd = os.getcwd()
 | |
|     cost_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model.name}_cost'))
 | |
|     if not os.path.exists(cost_dir):
 | |
|         os.makedirs(cost_dir)
 | |
|     os.chdir(cost_dir)
 | |
| 
 | |
|     ext_cost_fun.generate(fun_name, casadi_codegen_opts)
 | |
|     ext_cost_fun_jac_hess.generate(fun_name_hess, casadi_codegen_opts)
 | |
|     ext_cost_fun_jac.generate(fun_name_jac, casadi_codegen_opts)
 | |
| 
 | |
|     os.chdir(cwd)
 | |
|     return
 | |
| 
 | |
| 
 | |
| def generate_c_code_nls_cost( model, cost_name, stage_type, opts ):
 | |
| 
 | |
|     casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
| 
 | |
|     x = model.x
 | |
|     z = model.z
 | |
|     p = model.p
 | |
|     u = model.u
 | |
| 
 | |
|     symbol = get_casadi_symbol(x)
 | |
| 
 | |
|     if stage_type == 'terminal':
 | |
|         middle_name = '_cost_y_e'
 | |
|         u = symbol('u', 0, 0)
 | |
|         y_expr = model.cost_y_expr_e
 | |
| 
 | |
|     elif stage_type == 'initial':
 | |
|         middle_name = '_cost_y_0'
 | |
|         y_expr = model.cost_y_expr_0
 | |
| 
 | |
|     elif stage_type == 'path':
 | |
|         middle_name = '_cost_y'
 | |
|         y_expr = model.cost_y_expr
 | |
| 
 | |
|     # change directory
 | |
|     cwd = os.getcwd()
 | |
|     cost_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model.name}_cost'))
 | |
|     if not os.path.exists(cost_dir):
 | |
|         os.makedirs(cost_dir)
 | |
|     os.chdir(cost_dir)
 | |
| 
 | |
|     # set up expressions
 | |
|     cost_jac_expr = ca.transpose(ca.jacobian(y_expr, ca.vertcat(u, x)))
 | |
|     dy_dz = ca.jacobian(y_expr, z)
 | |
|     ny = casadi_length(y_expr)
 | |
| 
 | |
|     y = symbol('y', ny, 1)
 | |
| 
 | |
|     y_adj = ca.jtimes(y_expr, ca.vertcat(u, x), y, True)
 | |
|     y_hess = ca.jacobian(y_adj, ca.vertcat(u, x))
 | |
| 
 | |
|     ## generate C code
 | |
|     suffix_name = '_fun'
 | |
|     fun_name = cost_name + middle_name + suffix_name
 | |
|     y_fun = ca.Function( fun_name, [x, u, z, p], [ y_expr ])
 | |
|     y_fun.generate( fun_name, casadi_codegen_opts )
 | |
| 
 | |
|     suffix_name = '_fun_jac_ut_xt'
 | |
|     fun_name = cost_name + middle_name + suffix_name
 | |
|     y_fun_jac_ut_xt = ca.Function(fun_name, [x, u, z, p], [ y_expr, cost_jac_expr, dy_dz ])
 | |
|     y_fun_jac_ut_xt.generate( fun_name, casadi_codegen_opts )
 | |
| 
 | |
|     suffix_name = '_hess'
 | |
|     fun_name = cost_name + middle_name + suffix_name
 | |
|     y_hess = ca.Function(fun_name, [x, u, z, y, p], [ y_hess ])
 | |
|     y_hess.generate( fun_name, casadi_codegen_opts )
 | |
| 
 | |
|     os.chdir(cwd)
 | |
| 
 | |
|     return
 | |
| 
 | |
| 
 | |
| 
 | |
| def generate_c_code_conl_cost(model, cost_name, stage_type, opts):
 | |
| 
 | |
|     casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
| 
 | |
|     x = model.x
 | |
|     z = model.z
 | |
|     p = model.p
 | |
| 
 | |
|     symbol = get_casadi_symbol(x)
 | |
| 
 | |
|     if stage_type == 'terminal':
 | |
|         u = symbol('u', 0, 0)
 | |
| 
 | |
|         yref = model.cost_r_in_psi_expr_e
 | |
|         inner_expr = model.cost_y_expr_e - yref
 | |
|         outer_expr = model.cost_psi_expr_e
 | |
|         res_expr = model.cost_r_in_psi_expr_e
 | |
| 
 | |
|         suffix_name_fun = '_conl_cost_e_fun'
 | |
|         suffix_name_fun_jac_hess = '_conl_cost_e_fun_jac_hess'
 | |
| 
 | |
|         custom_hess = model.cost_conl_custom_outer_hess_e
 | |
| 
 | |
|     elif stage_type == 'initial':
 | |
|         u = model.u
 | |
| 
 | |
|         yref = model.cost_r_in_psi_expr_0
 | |
|         inner_expr = model.cost_y_expr_0 - yref
 | |
|         outer_expr = model.cost_psi_expr_0
 | |
|         res_expr = model.cost_r_in_psi_expr_0
 | |
| 
 | |
|         suffix_name_fun = '_conl_cost_0_fun'
 | |
|         suffix_name_fun_jac_hess = '_conl_cost_0_fun_jac_hess'
 | |
| 
 | |
|         custom_hess = model.cost_conl_custom_outer_hess_0
 | |
| 
 | |
|     elif stage_type == 'path':
 | |
|         u = model.u
 | |
| 
 | |
|         yref = model.cost_r_in_psi_expr
 | |
|         inner_expr = model.cost_y_expr - yref
 | |
|         outer_expr = model.cost_psi_expr
 | |
|         res_expr = model.cost_r_in_psi_expr
 | |
| 
 | |
|         suffix_name_fun = '_conl_cost_fun'
 | |
|         suffix_name_fun_jac_hess = '_conl_cost_fun_jac_hess'
 | |
| 
 | |
|         custom_hess = model.cost_conl_custom_outer_hess
 | |
| 
 | |
|     # set up function names
 | |
|     fun_name_cost_fun = model.name + suffix_name_fun
 | |
|     fun_name_cost_fun_jac_hess = model.name + suffix_name_fun_jac_hess
 | |
| 
 | |
|     # set up functions to be exported
 | |
|     outer_loss_fun = ca.Function('psi', [res_expr, p], [outer_expr])
 | |
|     cost_expr = outer_loss_fun(inner_expr, p)
 | |
| 
 | |
|     outer_loss_grad_fun = ca.Function('outer_loss_grad', [res_expr, p], [ca.jacobian(outer_expr, res_expr).T])
 | |
| 
 | |
|     if custom_hess is None:
 | |
|         outer_hess_fun = ca.Function('inner_hess', [res_expr, p], [ca.hessian(outer_loss_fun(res_expr, p), res_expr)[0]])
 | |
|     else:
 | |
|         outer_hess_fun = ca.Function('inner_hess', [res_expr, p], [custom_hess])
 | |
| 
 | |
|     Jt_ux_expr = ca.jacobian(inner_expr, ca.vertcat(u, x)).T
 | |
|     Jt_z_expr = ca.jacobian(inner_expr, z).T
 | |
| 
 | |
|     cost_fun = ca.Function(
 | |
|         fun_name_cost_fun,
 | |
|         [x, u, z, yref, p],
 | |
|         [cost_expr])
 | |
| 
 | |
|     cost_fun_jac_hess = ca.Function(
 | |
|         fun_name_cost_fun_jac_hess,
 | |
|         [x, u, z, yref, p],
 | |
|         [cost_expr, outer_loss_grad_fun(inner_expr, p), Jt_ux_expr, Jt_z_expr, outer_hess_fun(inner_expr, p)]
 | |
|     )
 | |
|     # change directory
 | |
|     cwd = os.getcwd()
 | |
|     cost_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model.name}_cost'))
 | |
|     if not os.path.exists(cost_dir):
 | |
|         os.makedirs(cost_dir)
 | |
|     os.chdir(cost_dir)
 | |
| 
 | |
|     # generate C code
 | |
|     cost_fun.generate(fun_name_cost_fun, casadi_codegen_opts)
 | |
|     cost_fun_jac_hess.generate(fun_name_cost_fun_jac_hess, casadi_codegen_opts)
 | |
| 
 | |
|     os.chdir(cwd)
 | |
| 
 | |
|     return
 | |
| 
 | |
| 
 | |
| ################
 | |
| # Constraints
 | |
| ################
 | |
| def generate_c_code_constraint( model, con_name, is_terminal, opts ):
 | |
| 
 | |
|     casadi_codegen_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
| 
 | |
|     # load constraint variables and expression
 | |
|     x = model.x
 | |
|     p = model.p
 | |
| 
 | |
|     symbol = get_casadi_symbol(x)
 | |
| 
 | |
|     if is_terminal:
 | |
|         con_h_expr = model.con_h_expr_e
 | |
|         con_phi_expr = model.con_phi_expr_e
 | |
|         # create dummy u, z
 | |
|         u = symbol('u', 0, 0)
 | |
|         z = symbol('z', 0, 0)
 | |
|     else:
 | |
|         con_h_expr = model.con_h_expr
 | |
|         con_phi_expr = model.con_phi_expr
 | |
|         u = model.u
 | |
|         z = model.z
 | |
| 
 | |
|     if (not is_empty(con_h_expr)) and (not is_empty(con_phi_expr)):
 | |
|         raise Exception("acados: you can either have constraint_h, or constraint_phi, not both.")
 | |
| 
 | |
|     if (is_empty(con_h_expr) and is_empty(con_phi_expr)):
 | |
|         # both empty -> nothing to generate
 | |
|         return
 | |
| 
 | |
|     if is_empty(con_h_expr):
 | |
|         constr_type = 'BGP'
 | |
|     else:
 | |
|         constr_type = 'BGH'
 | |
| 
 | |
|     if is_empty(p):
 | |
|         p = symbol('p', 0, 0)
 | |
| 
 | |
|     if is_empty(z):
 | |
|         z = symbol('z', 0, 0)
 | |
| 
 | |
|     if not (is_empty(con_h_expr)) and opts['generate_hess']:
 | |
|         # multipliers for hessian
 | |
|         nh = casadi_length(con_h_expr)
 | |
|         lam_h = symbol('lam_h', nh, 1)
 | |
| 
 | |
|     # set up & change directory
 | |
|     cwd = os.getcwd()
 | |
|     constraints_dir = os.path.abspath(os.path.join(opts["code_export_directory"], f'{model.name}_constraints'))
 | |
|     if not os.path.exists(constraints_dir):
 | |
|         os.makedirs(constraints_dir)
 | |
|     os.chdir(constraints_dir)
 | |
| 
 | |
|     # export casadi functions
 | |
|     if constr_type == 'BGH':
 | |
|         if is_terminal:
 | |
|             fun_name = con_name + '_constr_h_e_fun_jac_uxt_zt'
 | |
|         else:
 | |
|             fun_name = con_name + '_constr_h_fun_jac_uxt_zt'
 | |
| 
 | |
|         jac_ux_t = ca.transpose(ca.jacobian(con_h_expr, ca.vertcat(u,x)))
 | |
|         jac_z_t = ca.jacobian(con_h_expr, z)
 | |
|         constraint_fun_jac_tran = ca.Function(fun_name, [x, u, z, p], \
 | |
|                 [con_h_expr, jac_ux_t, jac_z_t])
 | |
| 
 | |
|         constraint_fun_jac_tran.generate(fun_name, casadi_codegen_opts)
 | |
|         if opts['generate_hess']:
 | |
| 
 | |
|             if is_terminal:
 | |
|                 fun_name = con_name + '_constr_h_e_fun_jac_uxt_zt_hess'
 | |
|             else:
 | |
|                 fun_name = con_name + '_constr_h_fun_jac_uxt_zt_hess'
 | |
| 
 | |
|             # adjoint
 | |
|             adj_ux = ca.jtimes(con_h_expr, ca.vertcat(u, x), lam_h, True)
 | |
|             # hessian
 | |
|             hess_ux = ca.jacobian(adj_ux, ca.vertcat(u, x))
 | |
| 
 | |
|             adj_z = ca.jtimes(con_h_expr, z, lam_h, True)
 | |
|             hess_z = ca.jacobian(adj_z, z)
 | |
| 
 | |
|             # set up functions
 | |
|             constraint_fun_jac_tran_hess = \
 | |
|                 ca.Function(fun_name, [x, u, lam_h, z, p], \
 | |
|                     [con_h_expr, jac_ux_t, hess_ux, jac_z_t, hess_z])
 | |
| 
 | |
|             # generate C code
 | |
|             constraint_fun_jac_tran_hess.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|         if is_terminal:
 | |
|             fun_name = con_name + '_constr_h_e_fun'
 | |
|         else:
 | |
|             fun_name = con_name + '_constr_h_fun'
 | |
|         h_fun = ca.Function(fun_name, [x, u, z, p], [con_h_expr])
 | |
|         h_fun.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     else: # BGP constraint
 | |
|         if is_terminal:
 | |
|             fun_name = con_name + '_phi_e_constraint'
 | |
|             r = model.con_r_in_phi_e
 | |
|             con_r_expr = model.con_r_expr_e
 | |
|         else:
 | |
|             fun_name = con_name + '_phi_constraint'
 | |
|             r = model.con_r_in_phi
 | |
|             con_r_expr = model.con_r_expr
 | |
| 
 | |
|         nphi = casadi_length(con_phi_expr)
 | |
|         con_phi_expr_x_u_z = ca.substitute(con_phi_expr, r, con_r_expr)
 | |
|         phi_jac_u = ca.jacobian(con_phi_expr_x_u_z, u)
 | |
|         phi_jac_x = ca.jacobian(con_phi_expr_x_u_z, x)
 | |
|         phi_jac_z = ca.jacobian(con_phi_expr_x_u_z, z)
 | |
| 
 | |
|         hess = ca.hessian(con_phi_expr[0], r)[0]
 | |
|         for i in range(1, nphi):
 | |
|             hess = ca.vertcat(hess, ca.hessian(con_phi_expr[i], r)[0])
 | |
| 
 | |
|         r_jac_u = ca.jacobian(con_r_expr, u)
 | |
|         r_jac_x = ca.jacobian(con_r_expr, x)
 | |
| 
 | |
|         constraint_phi = \
 | |
|             ca.Function(fun_name, [x, u, z, p], \
 | |
|                 [con_phi_expr_x_u_z, \
 | |
|                 ca.vertcat(ca.transpose(phi_jac_u), ca.transpose(phi_jac_x)), \
 | |
|                 ca.transpose(phi_jac_z), \
 | |
|                 hess,
 | |
|                 ca.vertcat(ca.transpose(r_jac_u), ca.transpose(r_jac_x))])
 | |
| 
 | |
|         constraint_phi.generate(fun_name, casadi_codegen_opts)
 | |
| 
 | |
|     # change directory back
 | |
|     os.chdir(cwd)
 | |
| 
 | |
|     return
 | |
| 
 | |
| 
 |