You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							89 lines
						
					
					
						
							3.1 KiB
						
					
					
				
			
		
		
	
	
							89 lines
						
					
					
						
							3.1 KiB
						
					
					
				from common.numpy_fast import interp
 | 
						|
import numpy as np
 | 
						|
from cereal import log
 | 
						|
 | 
						|
CAMERA_OFFSET = 0.06  # m from center car to camera
 | 
						|
 | 
						|
def compute_path_pinv(l=50):
 | 
						|
  deg = 3
 | 
						|
  x = np.arange(l*1.0)
 | 
						|
  X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
 | 
						|
  pinv = np.linalg.pinv(X)
 | 
						|
  return pinv
 | 
						|
 | 
						|
 | 
						|
def model_polyfit(points, path_pinv):
 | 
						|
  return np.dot(path_pinv, [float(x) for x in points])
 | 
						|
 | 
						|
 | 
						|
def calc_d_poly(l_poly, r_poly, p_poly, l_prob, r_prob, lane_width):
 | 
						|
  # This will improve behaviour when lanes suddenly widen
 | 
						|
  lane_width = min(4.0, lane_width)
 | 
						|
  l_prob = l_prob * interp(abs(l_poly[3]), [2, 2.5], [1.0, 0.0])
 | 
						|
  r_prob = r_prob * interp(abs(r_poly[3]), [2, 2.5], [1.0, 0.0])
 | 
						|
 | 
						|
  path_from_left_lane = l_poly.copy()
 | 
						|
  path_from_left_lane[3] -= lane_width / 2.0
 | 
						|
  path_from_right_lane = r_poly.copy()
 | 
						|
  path_from_right_lane[3] += lane_width / 2.0
 | 
						|
 | 
						|
  lr_prob = l_prob + r_prob - l_prob * r_prob
 | 
						|
 | 
						|
  d_poly_lane = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
 | 
						|
  return lr_prob * d_poly_lane + (1.0 - lr_prob) * p_poly
 | 
						|
 | 
						|
 | 
						|
class LanePlanner():
 | 
						|
  def __init__(self):
 | 
						|
    self.l_poly = [0., 0., 0., 0.]
 | 
						|
    self.r_poly = [0., 0., 0., 0.]
 | 
						|
    self.p_poly = [0., 0., 0., 0.]
 | 
						|
    self.d_poly = [0., 0., 0., 0.]
 | 
						|
 | 
						|
    self.lane_width_estimate = 3.7
 | 
						|
    self.lane_width_certainty = 1.0
 | 
						|
    self.lane_width = 3.7
 | 
						|
 | 
						|
    self.l_prob = 0.
 | 
						|
    self.r_prob = 0.
 | 
						|
 | 
						|
    self.l_lane_change_prob = 0.
 | 
						|
    self.r_lane_change_prob = 0.
 | 
						|
 | 
						|
    self._path_pinv = compute_path_pinv()
 | 
						|
    self.x_points = np.arange(50)
 | 
						|
 | 
						|
  def parse_model(self, md):
 | 
						|
    if len(md.leftLane.poly):
 | 
						|
      self.l_poly = np.array(md.leftLane.poly)
 | 
						|
      self.r_poly = np.array(md.rightLane.poly)
 | 
						|
      self.p_poly = np.array(md.path.poly)
 | 
						|
    else:
 | 
						|
      self.l_poly = model_polyfit(md.leftLane.points, self._path_pinv)  # left line
 | 
						|
      self.r_poly = model_polyfit(md.rightLane.points, self._path_pinv)  # right line
 | 
						|
      self.p_poly = model_polyfit(md.path.points, self._path_pinv)  # predicted path
 | 
						|
    self.l_prob = md.leftLane.prob  # left line prob
 | 
						|
    self.r_prob = md.rightLane.prob  # right line prob
 | 
						|
 | 
						|
    if len(md.meta.desireState):
 | 
						|
      self.l_lane_change_prob = md.meta.desireState[log.PathPlan.Desire.laneChangeLeft - 1]
 | 
						|
      self.r_lane_change_prob = md.meta.desireState[log.PathPlan.Desire.laneChangeRight - 1]
 | 
						|
 | 
						|
  def update_d_poly(self, v_ego):
 | 
						|
    # only offset left and right lane lines; offsetting p_poly does not make sense
 | 
						|
    self.l_poly[3] += CAMERA_OFFSET
 | 
						|
    self.r_poly[3] += CAMERA_OFFSET
 | 
						|
 | 
						|
    # Find current lanewidth
 | 
						|
    self.lane_width_certainty += 0.05 * (self.l_prob * self.r_prob - self.lane_width_certainty)
 | 
						|
    current_lane_width = abs(self.l_poly[3] - self.r_poly[3])
 | 
						|
    self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate)
 | 
						|
    speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
 | 
						|
    self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \
 | 
						|
                      (1 - self.lane_width_certainty) * speed_lane_width
 | 
						|
 | 
						|
    self.d_poly = calc_d_poly(self.l_poly, self.r_poly, self.p_poly, self.l_prob, self.r_prob, self.lane_width)
 | 
						|
 | 
						|
  def update(self, v_ego, md):
 | 
						|
    self.parse_model(md)
 | 
						|
    self.update_d_poly(v_ego)
 | 
						|
 |