openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

107 lines
3.3 KiB

#!/usr/bin/env python
import os
import zmq
import time
from selfdrive.can.parser import CANParser
from cereal import car
from common.realtime import sec_since_boot
from selfdrive.services import service_list
import selfdrive.messaging as messaging
from selfdrive.car.toyota.values import NO_DSU_CAR
RADAR_A_MSGS = list(range(0x210, 0x220))
RADAR_B_MSGS = list(range(0x220, 0x230))
def _create_radard_can_parser():
dbc_f = 'toyota_prius_2017_adas.dbc'
msg_a_n = len(RADAR_A_MSGS)
msg_b_n = len(RADAR_B_MSGS)
signals = zip(['LONG_DIST'] * msg_a_n + ['NEW_TRACK'] * msg_a_n + ['LAT_DIST'] * msg_a_n +
['REL_SPEED'] * msg_a_n + ['VALID'] * msg_a_n + ['SCORE'] * msg_b_n,
RADAR_A_MSGS * 5 + RADAR_B_MSGS,
[255] * msg_a_n + [1] * msg_a_n + [0] * msg_a_n + [0] * msg_a_n + [0] * msg_a_n + [0] * msg_b_n)
checks = zip(RADAR_A_MSGS + RADAR_B_MSGS, [20]*(msg_a_n + msg_b_n))
return CANParser(os.path.splitext(dbc_f)[0], signals, checks, 1)
class RadarInterface(object):
def __init__(self, CP):
# radar
self.pts = {}
self.valid_cnt = {key: 0 for key in RADAR_A_MSGS}
self.track_id = 0
self.delay = 0.0 # Delay of radar
self.rcp = _create_radard_can_parser()
self.no_dsu_car = CP.carFingerprint in NO_DSU_CAR
context = zmq.Context()
self.logcan = messaging.sub_sock(context, service_list['can'].port)
def update(self):
ret = car.RadarState.new_message()
if self.no_dsu_car:
# TODO: make a adas dbc file for dsu-less models
time.sleep(0.05)
return ret
canMonoTimes = []
updated_messages = set()
while 1:
tm = int(sec_since_boot() * 1e9)
updated_messages.update(self.rcp.update(tm, True))
if RADAR_B_MSGS[-1] in updated_messages:
break
errors = []
if not self.rcp.can_valid:
errors.append("commIssue")
ret.errors = errors
ret.canMonoTimes = canMonoTimes
for ii in updated_messages:
if ii in RADAR_A_MSGS:
cpt = self.rcp.vl[ii]
if cpt['LONG_DIST'] >=255 or cpt['NEW_TRACK']:
self.valid_cnt[ii] = 0 # reset counter
if cpt['VALID'] and cpt['LONG_DIST'] < 255:
self.valid_cnt[ii] += 1
else:
self.valid_cnt[ii] = max(self.valid_cnt[ii] -1, 0)
score = self.rcp.vl[ii+16]['SCORE']
# print ii, self.valid_cnt[ii], score, cpt['VALID'], cpt['LONG_DIST'], cpt['LAT_DIST']
# radar point only valid if it's a valid measurement and score is above 50
if cpt['VALID'] or (score > 50 and cpt['LONG_DIST'] < 255 and self.valid_cnt[ii] > 0):
if ii not in self.pts or cpt['NEW_TRACK']:
self.pts[ii] = car.RadarState.RadarPoint.new_message()
self.pts[ii].trackId = self.track_id
self.track_id += 1
self.pts[ii].dRel = cpt['LONG_DIST'] # from front of car
self.pts[ii].yRel = -cpt['LAT_DIST'] # in car frame's y axis, left is positive
self.pts[ii].vRel = cpt['REL_SPEED']
self.pts[ii].aRel = float('nan')
self.pts[ii].yvRel = float('nan')
self.pts[ii].measured = bool(cpt['VALID'])
else:
if ii in self.pts:
del self.pts[ii]
ret.points = self.pts.values()
return ret
if __name__ == "__main__":
RI = RadarInterface(None)
while 1:
ret = RI.update()
print(chr(27) + "[2J")
print(ret)