openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

106 lines
3.9 KiB

import numpy as np
from cereal import log
from common.filter_simple import FirstOrderFilter
from common.numpy_fast import interp
from common.realtime import DT_MDL
from selfdrive.hardware import EON, TICI
from selfdrive.swaglog import cloudlog
TRAJECTORY_SIZE = 33
# camera offset is meters from center car to camera
# model path is in the frame of EON's camera. TICI is 0.1 m away,
# however the average measured path difference is 0.04 m
if EON:
CAMERA_OFFSET = -0.06
PATH_OFFSET = 0.0
elif TICI:
CAMERA_OFFSET = 0.04
PATH_OFFSET = 0.04
else:
CAMERA_OFFSET = 0.0
PATH_OFFSET = 0.0
class LanePlanner:
def __init__(self, wide_camera=False):
self.ll_t = np.zeros((TRAJECTORY_SIZE,))
self.ll_x = np.zeros((TRAJECTORY_SIZE,))
self.lll_y = np.zeros((TRAJECTORY_SIZE,))
self.rll_y = np.zeros((TRAJECTORY_SIZE,))
self.lane_width_estimate = FirstOrderFilter(3.7, 9.95, DT_MDL)
self.lane_width_certainty = FirstOrderFilter(1.0, 0.95, DT_MDL)
self.lane_width = 3.7
self.lll_prob = 0.
self.rll_prob = 0.
self.d_prob = 0.
self.lll_std = 0.
self.rll_std = 0.
self.l_lane_change_prob = 0.
self.r_lane_change_prob = 0.
self.camera_offset = -CAMERA_OFFSET if wide_camera else CAMERA_OFFSET
self.path_offset = -PATH_OFFSET if wide_camera else PATH_OFFSET
def parse_model(self, md):
lane_lines = md.laneLines
if len(lane_lines) == 4 and len(lane_lines[0].t) == TRAJECTORY_SIZE:
self.ll_t = (np.array(lane_lines[1].t) + np.array(lane_lines[2].t))/2
# left and right ll x is the same
self.ll_x = lane_lines[1].x
self.lll_y = np.array(lane_lines[1].y) + self.camera_offset
self.rll_y = np.array(lane_lines[2].y) + self.camera_offset
self.lll_prob = md.laneLineProbs[1]
self.rll_prob = md.laneLineProbs[2]
self.lll_std = md.laneLineStds[1]
self.rll_std = md.laneLineStds[2]
desire_state = md.meta.desireState
if len(desire_state):
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
def get_d_path(self, v_ego, path_t, path_xyz):
# Reduce reliance on lanelines that are too far apart or
# will be in a few seconds
path_xyz[:, 1] += self.path_offset
l_prob, r_prob = self.lll_prob, self.rll_prob
width_pts = self.rll_y - self.lll_y
prob_mods = []
for t_check in (0.0, 1.5, 3.0):
width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts)
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
mod = min(prob_mods)
l_prob *= mod
r_prob *= mod
# Reduce reliance on uncertain lanelines
l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0])
r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0])
l_prob *= l_std_mod
r_prob *= r_std_mod
# Find current lanewidth
self.lane_width_certainty.update(l_prob * r_prob)
current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
self.lane_width_estimate.update(current_lane_width)
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
self.lane_width = self.lane_width_certainty.x * self.lane_width_estimate.x + \
(1 - self.lane_width_certainty.x) * speed_lane_width
clipped_lane_width = min(4.0, self.lane_width)
path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
self.d_prob = l_prob + r_prob - l_prob * r_prob
lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
safe_idxs = np.isfinite(self.ll_t)
if safe_idxs[0]:
lane_path_y_interp = np.interp(path_t, self.ll_t[safe_idxs], lane_path_y[safe_idxs])
path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
else:
cloudlog.warning("Lateral mpc - NaNs in laneline times, ignoring")
return path_xyz