You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.9 KiB
106 lines
3.9 KiB
import numpy as np
|
|
from cereal import log
|
|
from common.filter_simple import FirstOrderFilter
|
|
from common.numpy_fast import interp
|
|
from common.realtime import DT_MDL
|
|
from selfdrive.hardware import EON, TICI
|
|
from selfdrive.swaglog import cloudlog
|
|
|
|
|
|
TRAJECTORY_SIZE = 33
|
|
# camera offset is meters from center car to camera
|
|
# model path is in the frame of EON's camera. TICI is 0.1 m away,
|
|
# however the average measured path difference is 0.04 m
|
|
if EON:
|
|
CAMERA_OFFSET = -0.06
|
|
PATH_OFFSET = 0.0
|
|
elif TICI:
|
|
CAMERA_OFFSET = 0.04
|
|
PATH_OFFSET = 0.04
|
|
else:
|
|
CAMERA_OFFSET = 0.0
|
|
PATH_OFFSET = 0.0
|
|
|
|
|
|
class LanePlanner:
|
|
def __init__(self, wide_camera=False):
|
|
self.ll_t = np.zeros((TRAJECTORY_SIZE,))
|
|
self.ll_x = np.zeros((TRAJECTORY_SIZE,))
|
|
self.lll_y = np.zeros((TRAJECTORY_SIZE,))
|
|
self.rll_y = np.zeros((TRAJECTORY_SIZE,))
|
|
self.lane_width_estimate = FirstOrderFilter(3.7, 9.95, DT_MDL)
|
|
self.lane_width_certainty = FirstOrderFilter(1.0, 0.95, DT_MDL)
|
|
self.lane_width = 3.7
|
|
|
|
self.lll_prob = 0.
|
|
self.rll_prob = 0.
|
|
self.d_prob = 0.
|
|
|
|
self.lll_std = 0.
|
|
self.rll_std = 0.
|
|
|
|
self.l_lane_change_prob = 0.
|
|
self.r_lane_change_prob = 0.
|
|
|
|
self.camera_offset = -CAMERA_OFFSET if wide_camera else CAMERA_OFFSET
|
|
self.path_offset = -PATH_OFFSET if wide_camera else PATH_OFFSET
|
|
|
|
def parse_model(self, md):
|
|
lane_lines = md.laneLines
|
|
if len(lane_lines) == 4 and len(lane_lines[0].t) == TRAJECTORY_SIZE:
|
|
self.ll_t = (np.array(lane_lines[1].t) + np.array(lane_lines[2].t))/2
|
|
# left and right ll x is the same
|
|
self.ll_x = lane_lines[1].x
|
|
self.lll_y = np.array(lane_lines[1].y) + self.camera_offset
|
|
self.rll_y = np.array(lane_lines[2].y) + self.camera_offset
|
|
self.lll_prob = md.laneLineProbs[1]
|
|
self.rll_prob = md.laneLineProbs[2]
|
|
self.lll_std = md.laneLineStds[1]
|
|
self.rll_std = md.laneLineStds[2]
|
|
|
|
desire_state = md.meta.desireState
|
|
if len(desire_state):
|
|
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
|
|
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
|
|
|
|
def get_d_path(self, v_ego, path_t, path_xyz):
|
|
# Reduce reliance on lanelines that are too far apart or
|
|
# will be in a few seconds
|
|
path_xyz[:, 1] += self.path_offset
|
|
l_prob, r_prob = self.lll_prob, self.rll_prob
|
|
width_pts = self.rll_y - self.lll_y
|
|
prob_mods = []
|
|
for t_check in (0.0, 1.5, 3.0):
|
|
width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts)
|
|
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
|
|
mod = min(prob_mods)
|
|
l_prob *= mod
|
|
r_prob *= mod
|
|
|
|
# Reduce reliance on uncertain lanelines
|
|
l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0])
|
|
r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0])
|
|
l_prob *= l_std_mod
|
|
r_prob *= r_std_mod
|
|
|
|
# Find current lanewidth
|
|
self.lane_width_certainty.update(l_prob * r_prob)
|
|
current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
|
|
self.lane_width_estimate.update(current_lane_width)
|
|
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
|
|
self.lane_width = self.lane_width_certainty.x * self.lane_width_estimate.x + \
|
|
(1 - self.lane_width_certainty.x) * speed_lane_width
|
|
|
|
clipped_lane_width = min(4.0, self.lane_width)
|
|
path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
|
|
path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
|
|
|
|
self.d_prob = l_prob + r_prob - l_prob * r_prob
|
|
lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
|
|
safe_idxs = np.isfinite(self.ll_t)
|
|
if safe_idxs[0]:
|
|
lane_path_y_interp = np.interp(path_t, self.ll_t[safe_idxs], lane_path_y[safe_idxs])
|
|
path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
|
|
else:
|
|
cloudlog.warning("Lateral mpc - NaNs in laneline times, ignoring")
|
|
return path_xyz
|
|
|