You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
14 KiB
321 lines
14 KiB
#!/usr/bin/env python3
|
|
import os
|
|
import json
|
|
import time
|
|
import capnp
|
|
import numpy as np
|
|
from enum import Enum
|
|
from collections import defaultdict
|
|
|
|
from cereal import log, messaging
|
|
from openpilot.common.transformations.orientation import rot_from_euler
|
|
from openpilot.common.realtime import config_realtime_process
|
|
from openpilot.common.params import Params
|
|
from openpilot.selfdrive.locationd.helpers import rotate_std
|
|
from openpilot.selfdrive.locationd.models.pose_kf import PoseKalman, States
|
|
from openpilot.selfdrive.locationd.models.constants import ObservationKind, GENERATED_DIR
|
|
|
|
ACCEL_SANITY_CHECK = 100.0 # m/s^2
|
|
ROTATION_SANITY_CHECK = 10.0 # rad/s
|
|
TRANS_SANITY_CHECK = 200.0 # m/s
|
|
CALIB_RPY_SANITY_CHECK = 0.5 # rad (+- 30 deg)
|
|
MIN_STD_SANITY_CHECK = 1e-5 # m or rad
|
|
MAX_FILTER_REWIND_TIME = 0.8 # s
|
|
MAX_SENSOR_TIME_DIFF = 0.1 # s
|
|
YAWRATE_CROSS_ERR_CHECK_FACTOR = 30
|
|
INPUT_INVALID_THRESHOLD = 0.5
|
|
INPUT_INVALID_DECAY = 0.9993 # ~10 secs to resume after a bad input
|
|
POSENET_STD_INITIAL_VALUE = 10.0
|
|
POSENET_STD_HIST_HALF = 20
|
|
|
|
|
|
def init_xyz_measurement(measurement: capnp._DynamicStructBuilder, values: np.ndarray, stds: np.ndarray, valid: bool):
|
|
assert len(values) == len(stds) == 3
|
|
for i, d in enumerate(("x", "y", "z")):
|
|
setattr(measurement, d, float(values[i]))
|
|
setattr(measurement, f"{d}Std", float(stds[i]))
|
|
measurement.valid = valid
|
|
|
|
|
|
class HandleLogResult(Enum):
|
|
SUCCESS = 0
|
|
TIMING_INVALID = 1
|
|
INPUT_INVALID = 2
|
|
SENSOR_SOURCE_INVALID = 3
|
|
|
|
|
|
class LocationEstimator:
|
|
def __init__(self, debug: bool):
|
|
self.kf = PoseKalman(GENERATED_DIR, MAX_FILTER_REWIND_TIME)
|
|
|
|
self.debug = debug
|
|
|
|
self.posenet_stds = [POSENET_STD_INITIAL_VALUE] * (POSENET_STD_HIST_HALF * 2)
|
|
self.car_speed = 0.0
|
|
self.camodo_yawrate_distribution = np.array([0.0, 10.0]) # mean, std
|
|
self.device_from_calib = np.eye(3)
|
|
|
|
obs_kinds = [ObservationKind.PHONE_ACCEL, ObservationKind.PHONE_GYRO, ObservationKind.CAMERA_ODO_ROTATION, ObservationKind.CAMERA_ODO_TRANSLATION]
|
|
self.observations = {kind: np.zeros(3, dtype=np.float32) for kind in obs_kinds}
|
|
self.observation_errors = {kind: np.zeros(3, dtype=np.float32) for kind in obs_kinds}
|
|
|
|
def reset(self, t: float, x_initial: np.ndarray = PoseKalman.initial_x, P_initial: np.ndarray = PoseKalman.initial_P):
|
|
self.kf.reset(t, x_initial, P_initial)
|
|
|
|
def _validate_sensor_source(self, source: log.SensorEventData.SensorSource):
|
|
# some segments have two IMUs, ignore the second one
|
|
return source != log.SensorEventData.SensorSource.bmx055
|
|
|
|
def _validate_sensor_time(self, sensor_time: float, t: float):
|
|
# ignore empty readings
|
|
if sensor_time == 0:
|
|
return False
|
|
|
|
# sensor time and log time should be close
|
|
sensor_time_invalid = abs(sensor_time - t) > MAX_SENSOR_TIME_DIFF
|
|
if sensor_time_invalid:
|
|
print("Sensor reading ignored, sensor timestamp more than 100ms off from log time")
|
|
return not sensor_time_invalid
|
|
|
|
def _validate_timestamp(self, t: float):
|
|
kf_t = self.kf.t
|
|
invalid = not np.isnan(kf_t) and (kf_t - t) > MAX_FILTER_REWIND_TIME
|
|
if invalid:
|
|
print("Observation timestamp is older than the max rewind threshold of the filter")
|
|
return not invalid
|
|
|
|
def _finite_check(self, t: float, new_x: np.ndarray, new_P: np.ndarray):
|
|
all_finite = np.isfinite(new_x).all() and np.isfinite(new_P).all()
|
|
if not all_finite:
|
|
print("Non-finite values detected, kalman reset")
|
|
self.reset(t)
|
|
|
|
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader) -> HandleLogResult:
|
|
new_x, new_P = None, None
|
|
if which == "accelerometer" and msg.which() == "acceleration":
|
|
sensor_time = msg.timestamp * 1e-9
|
|
|
|
if not self._validate_sensor_time(sensor_time, t) or not self._validate_timestamp(sensor_time):
|
|
return HandleLogResult.TIMING_INVALID
|
|
|
|
if not self._validate_sensor_source(msg.source):
|
|
return HandleLogResult.SENSOR_SOURCE_INVALID
|
|
|
|
v = msg.acceleration.v
|
|
meas = np.array([-v[2], -v[1], -v[0]])
|
|
if np.linalg.norm(meas) >= ACCEL_SANITY_CHECK:
|
|
return HandleLogResult.INPUT_INVALID
|
|
|
|
acc_res = self.kf.predict_and_observe(sensor_time, ObservationKind.PHONE_ACCEL, meas)
|
|
if acc_res is not None:
|
|
_, new_x, _, new_P, _, _, (acc_err,), _, _ = acc_res
|
|
self.observation_errors[ObservationKind.PHONE_ACCEL] = np.array(acc_err)
|
|
self.observations[ObservationKind.PHONE_ACCEL] = meas
|
|
|
|
elif which == "gyroscope" and msg.which() == "gyroUncalibrated":
|
|
sensor_time = msg.timestamp * 1e-9
|
|
|
|
if not self._validate_sensor_time(sensor_time, t) or not self._validate_timestamp(sensor_time):
|
|
return HandleLogResult.TIMING_INVALID
|
|
|
|
if not self._validate_sensor_source(msg.source):
|
|
return HandleLogResult.SENSOR_SOURCE_INVALID
|
|
|
|
v = msg.gyroUncalibrated.v
|
|
meas = np.array([-v[2], -v[1], -v[0]])
|
|
|
|
gyro_bias = self.kf.x[States.GYRO_BIAS]
|
|
gyro_camodo_yawrate_err = np.abs((meas[2] - gyro_bias[2]) - self.camodo_yawrate_distribution[0])
|
|
gyro_camodo_yawrate_err_threshold = YAWRATE_CROSS_ERR_CHECK_FACTOR * self.camodo_yawrate_distribution[1]
|
|
gyro_valid = gyro_camodo_yawrate_err < gyro_camodo_yawrate_err_threshold
|
|
|
|
if np.linalg.norm(meas) >= ROTATION_SANITY_CHECK or not gyro_valid:
|
|
return HandleLogResult.INPUT_INVALID
|
|
|
|
gyro_res = self.kf.predict_and_observe(sensor_time, ObservationKind.PHONE_GYRO, meas)
|
|
if gyro_res is not None:
|
|
_, new_x, _, new_P, _, _, (gyro_err,), _, _ = gyro_res
|
|
self.observation_errors[ObservationKind.PHONE_GYRO] = np.array(gyro_err)
|
|
self.observations[ObservationKind.PHONE_GYRO] = meas
|
|
|
|
elif which == "carState":
|
|
self.car_speed = abs(msg.vEgo)
|
|
|
|
elif which == "liveCalibration":
|
|
if len(msg.rpyCalib) > 0:
|
|
calib = np.array(msg.rpyCalib)
|
|
if calib.min() < -CALIB_RPY_SANITY_CHECK or calib.max() > CALIB_RPY_SANITY_CHECK:
|
|
return HandleLogResult.INPUT_INVALID
|
|
|
|
self.device_from_calib = rot_from_euler(calib)
|
|
self.calibrated = msg.calStatus == log.LiveCalibrationData.Status.calibrated
|
|
|
|
elif which == "cameraOdometry":
|
|
if not self._validate_timestamp(t):
|
|
return HandleLogResult.TIMING_INVALID
|
|
|
|
rot_device = np.matmul(self.device_from_calib, np.array(msg.rot))
|
|
trans_device = np.matmul(self.device_from_calib, np.array(msg.trans))
|
|
|
|
if np.linalg.norm(rot_device) > ROTATION_SANITY_CHECK or np.linalg.norm(trans_device) > TRANS_SANITY_CHECK:
|
|
return HandleLogResult.INPUT_INVALID
|
|
|
|
rot_calib_std = np.array(msg.rotStd)
|
|
trans_calib_std = np.array(msg.transStd)
|
|
|
|
if rot_calib_std.min() <= MIN_STD_SANITY_CHECK or trans_calib_std.min() <= MIN_STD_SANITY_CHECK:
|
|
return HandleLogResult.INPUT_INVALID
|
|
|
|
if np.linalg.norm(rot_calib_std) > 10 * ROTATION_SANITY_CHECK or np.linalg.norm(trans_calib_std) > 10 * TRANS_SANITY_CHECK:
|
|
return HandleLogResult.INPUT_INVALID
|
|
|
|
self.posenet_stds.pop(0)
|
|
self.posenet_stds.append(trans_calib_std[0])
|
|
|
|
# Multiply by N to avoid to high certainty in kalman filter because of temporally correlated noise
|
|
rot_calib_std *= 10
|
|
trans_calib_std *= 2
|
|
|
|
rot_device_std = rotate_std(self.device_from_calib, rot_calib_std)
|
|
trans_device_std = rotate_std(self.device_from_calib, trans_calib_std)
|
|
rot_device_noise = rot_device_std ** 2
|
|
trans_device_noise = trans_device_std ** 2
|
|
|
|
cam_odo_rot_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_ROTATION, rot_device, rot_device_noise)
|
|
cam_odo_trans_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_TRANSLATION, trans_device, trans_device_noise)
|
|
self.camodo_yawrate_distribution = np.array([rot_device[2], rot_device_std[2]])
|
|
if cam_odo_rot_res is not None:
|
|
_, new_x, _, new_P, _, _, (cam_odo_rot_err,), _, _ = cam_odo_rot_res
|
|
self.observation_errors[ObservationKind.CAMERA_ODO_ROTATION] = np.array(cam_odo_rot_err)
|
|
self.observations[ObservationKind.CAMERA_ODO_ROTATION] = rot_device
|
|
if cam_odo_trans_res is not None:
|
|
_, new_x, _, new_P, _, _, (cam_odo_trans_err,), _, _ = cam_odo_trans_res
|
|
self.observation_errors[ObservationKind.CAMERA_ODO_TRANSLATION] = np.array(cam_odo_trans_err)
|
|
self.observations[ObservationKind.CAMERA_ODO_TRANSLATION] = trans_device
|
|
|
|
if new_x is not None and new_P is not None:
|
|
self._finite_check(t, new_x, new_P)
|
|
return HandleLogResult.SUCCESS
|
|
|
|
def get_msg(self, sensors_valid: bool, inputs_valid: bool, filter_valid: bool):
|
|
state, cov = self.kf.x, self.kf.P
|
|
std = np.sqrt(np.diag(cov))
|
|
|
|
orientation_ned, orientation_ned_std = state[States.NED_ORIENTATION], std[States.NED_ORIENTATION]
|
|
velocity_device, velocity_device_std = state[States.DEVICE_VELOCITY], std[States.DEVICE_VELOCITY]
|
|
angular_velocity_device, angular_velocity_device_std = state[States.ANGULAR_VELOCITY], std[States.ANGULAR_VELOCITY]
|
|
acceleration_device, acceleration_device_std = state[States.ACCELERATION], std[States.ACCELERATION]
|
|
|
|
msg = messaging.new_message("livePose")
|
|
msg.valid = filter_valid
|
|
|
|
livePose = msg.livePose
|
|
init_xyz_measurement(livePose.orientationNED, orientation_ned, orientation_ned_std, filter_valid)
|
|
init_xyz_measurement(livePose.velocityDevice, velocity_device, velocity_device_std, filter_valid)
|
|
init_xyz_measurement(livePose.angularVelocityDevice, angular_velocity_device, angular_velocity_device_std, filter_valid)
|
|
init_xyz_measurement(livePose.accelerationDevice, acceleration_device, acceleration_device_std, filter_valid)
|
|
if self.debug:
|
|
livePose.debugFilterState.value = state.tolist()
|
|
livePose.debugFilterState.std = std.tolist()
|
|
livePose.debugFilterState.valid = filter_valid
|
|
livePose.debugFilterState.observations = [
|
|
{'kind': k, 'value': self.observations[k].tolist(), 'error': self.observation_errors[k].tolist()}
|
|
for k in self.observations.keys()
|
|
]
|
|
|
|
old_mean = np.mean(self.posenet_stds[:POSENET_STD_HIST_HALF])
|
|
new_mean = np.mean(self.posenet_stds[POSENET_STD_HIST_HALF:])
|
|
std_spike = (new_mean / old_mean) > 4.0 and new_mean > 7.0
|
|
|
|
livePose.inputsOK = inputs_valid
|
|
livePose.posenetOK = not std_spike or self.car_speed <= 5.0
|
|
livePose.sensorsOK = sensors_valid
|
|
|
|
return msg
|
|
|
|
|
|
def sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, simulation):
|
|
cur_time = time.monotonic()
|
|
for which, msgs in [("accelerometer", acc_msgs), ("gyroscope", gyro_msgs)]:
|
|
if len(msgs) > 0:
|
|
sensor_valid[which] = msgs[-1].valid
|
|
sensor_recv_time[which] = cur_time
|
|
|
|
if not simulation:
|
|
sensor_alive[which] = (cur_time - sensor_recv_time[which]) < 0.1
|
|
else:
|
|
sensor_alive[which] = len(msgs) > 0
|
|
|
|
return all(sensor_alive.values()) and all(sensor_valid.values())
|
|
|
|
|
|
def main():
|
|
config_realtime_process([0, 1, 2, 3], 5)
|
|
|
|
DEBUG = bool(int(os.getenv("DEBUG", "0")))
|
|
SIMULATION = bool(int(os.getenv("SIMULATION", "0")))
|
|
|
|
pm = messaging.PubMaster(['livePose'])
|
|
sm = messaging.SubMaster(['carState', 'liveCalibration', 'cameraOdometry'], poll='cameraOdometry')
|
|
# separate sensor sockets for efficiency
|
|
sensor_sockets = [messaging.sub_sock(which, timeout=20) for which in ['accelerometer', 'gyroscope']]
|
|
sensor_alive, sensor_valid, sensor_recv_time = defaultdict(bool), defaultdict(bool), defaultdict(float)
|
|
|
|
params = Params()
|
|
|
|
estimator = LocationEstimator(DEBUG)
|
|
|
|
filter_initialized = False
|
|
critcal_services = ["accelerometer", "gyroscope", "liveCalibration", "cameraOdometry"]
|
|
observation_timing_invalid = False
|
|
observation_input_invalid = defaultdict(int)
|
|
|
|
initial_pose = params.get("LocationFilterInitialState")
|
|
if initial_pose is not None:
|
|
initial_pose = json.loads(initial_pose)
|
|
x_initial = np.array(initial_pose["x"], dtype=np.float64)
|
|
P_initial = np.diag(np.array(initial_pose["P"], dtype=np.float64))
|
|
estimator.reset(None, x_initial, P_initial)
|
|
|
|
while True:
|
|
sm.update()
|
|
|
|
acc_msgs, gyro_msgs = (messaging.drain_sock(sock) for sock in sensor_sockets)
|
|
|
|
if filter_initialized:
|
|
observation_timing_invalid = False
|
|
|
|
msgs = []
|
|
for msg in acc_msgs + gyro_msgs:
|
|
t, valid, which, data = msg.logMonoTime, msg.valid, msg.which(), getattr(msg, msg.which())
|
|
msgs.append((t, valid, which, data))
|
|
for which, updated in sm.updated.items():
|
|
if not updated:
|
|
continue
|
|
t, valid, data = sm.logMonoTime[which], sm.valid[which], sm[which]
|
|
msgs.append((t, valid, which, data))
|
|
|
|
for log_mono_time, valid, which, msg in sorted(msgs, key=lambda x: x[0]):
|
|
if valid:
|
|
t = log_mono_time * 1e-9
|
|
res = estimator.handle_log(t, which, msg)
|
|
if res == HandleLogResult.TIMING_INVALID:
|
|
observation_timing_invalid = True
|
|
elif res == HandleLogResult.INPUT_INVALID:
|
|
observation_input_invalid[which] += 1
|
|
else:
|
|
observation_input_invalid[which] *= INPUT_INVALID_DECAY
|
|
else:
|
|
filter_initialized = sm.all_checks() and sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, SIMULATION)
|
|
|
|
if sm.updated["cameraOdometry"]:
|
|
critical_service_inputs_valid = all(observation_input_invalid[s] < INPUT_INVALID_THRESHOLD for s in critcal_services)
|
|
inputs_valid = sm.all_valid() and critical_service_inputs_valid and not observation_timing_invalid
|
|
sensors_valid = sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, SIMULATION)
|
|
|
|
msg = estimator.get_msg(sensors_valid, inputs_valid, filter_initialized)
|
|
pm.send("livePose", msg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|